精英家教网 > 高中数学 > 题目详情

(06年上海卷理)(14分)

在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.

(1)求证:“如果直线过点T(3,0),那么=3”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

解析:(1)设过点T(3,0)的直线交抛物线y2=2x于点A(x1,y1)、B(x2,y2).

         当直线的钭率不存在时,直线的方程为x=3,此时,直线与抛物线相交于点A(3,)、B(3,-).             ∴=3;

         当直线的钭率存在时,设直线的方程为,其中

         由

         又 ∵

    ∴

    综上所述,命题“如果直线过点T(3,0),那么=3”是真命题;

(2)逆命题是:设直线交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题.

   例如:取抛物线上的点A(2,2),B(,1),此时=3,

直线AB的方程为:,而T(3,0)不在直线AB上;

说明:由抛物线y2=2x上的点A (x1,y1)、B (x2,y2) 满足=3,可得y1y2=-6,

或y1y2=2,如果y1y2=-6,可证得直线AB过点(3,0);如果y1y2=2,可证得直线AB过点(-1,0),而不过点(3,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年上海卷理)在极坐标系中,O是极点,设点A(4,),B(5,-),则△OAB的面积是          .

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年上海卷理)如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是                 .

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年上海卷理)(14分)在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60

(1)求四棱锥P-ABCD的体积;

(2)若E是PB的中点,求异面直线DE与PA所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年上海卷理)(14分)在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60

(1)求四棱锥P-ABCD的体积;

(2)若E是PB的中点,求异面直线DE与PA所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

同步练习册答案