精英家教网 > 高中数学 > 题目详情
在三棱锥S-ABC中,△ABC是边长为2
3
的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.
(1)证明:AC⊥SB;
(2)求三棱锥B-CMN的体积.
(1)证明:取AC中点D,连接SD,DB.
因为SA=SC,AB=BC,所以AC⊥SD且AC⊥BD,
因为SD∩BD=D,所以AC⊥平面SDB.
又SB?平面SDB,所以AC⊥SB;
(2)因为AC⊥平面SDB,AC?平面ABC,所以平面SDC⊥平面ABC.
过N作NE⊥BD于E,则NE⊥平面ABC,
因为平面SAC⊥平面ABC,SD⊥AC,所以SD⊥平面ABC.
又因为NE⊥平面ABC,所以NESD.
由于SN=NB,所以NE=
1
2
SD=
1
2

所以S△CMB=
1
2
CM•BM=
3
3
2

所以VB-CMN=VN-CMB=
1
3
S△CMB•NE=
1
3
×
3
3
2
×
1
2
=
3
4

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面EAD⊥平面ABCD,△ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点,EC与平面ABCD成30°角.
(1)求证:EG⊥平面ABCD;
(2)若AD=2,求二面角E-FC-G的度数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,ADBC,AB=AD=PB,BC=2AD.点E在棱PA上,且PE=2EA.
(I)求证:CD⊥平面PBD;
(II)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α、β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,
(1)证明:AD⊥平面PAC;
(2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,AO⊥平面α,点O为垂足,BC?平面α,BC⊥OB,若∠ABO=
π
4
∠COB=
π
6
,则cos∠BAC=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

作等腰直角三角形ABC的斜边AB的中线CD,沿CD将△ABC折叠,使平面ACD⊥平面BCD,则折叠后AC与BC的夹角∠ACB的度数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在圆锥PO中,已知PO=
2
,⊙O的直径AB=2,C是
AB
的中点,D为AC的中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.

查看答案和解析>>

同步练习册答案