精英家教网 > 高中数学 > 题目详情
已知点F是椭圆右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足,若点P满足
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.
【答案】分析:(1)设点P(x,y),由题意可知,点F的坐标为(a,0),,由,消去n与m可得y2=4ax.
(2)设过F点的直线l方程为:y=k(x-a),与轨迹C交于A(x1,y1)、B(x2,y2)两点,得:k2x2-(2ka+4a)x+k2a2=0,则x1x2=a2,y1y2=-4a2.得直线OA的方程为:,所以点S为;同理得点T为;表示出即可得到答案.
解答:解:(1)设点P(x,y),由题意可知,点F的坐标为(a,0),
①,
得:(x,y)=(-m,2n),即②,
将②式代入①式得:y2=4ax
(2)设过F点的直线l方程为:y=k(x-a),与轨迹C交于A(x1,y1)、B(x2,y2)两点,
联立得:k2x2-(2ka+4a)x+k2a2=0,
则x1x2=a2
由于直线OA的方程为:,则点S的坐标为
同理可得点T的坐标为


点评:解决此类题目的关键是熟练掌握求轨迹方程的方法(消参法),以及设点利用点表示有关的向量的表达式即可,此题对计算能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年广西柳州市铁路一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知点F是椭圆右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足,若点P满足
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市六都中学高二(下)第三学段数学试卷(理科)(解析版) 题型:解答题

已知点F是椭圆右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足,若点P满足
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年广东省深圳市高考数学一模试卷(理科)(解析版) 题型:解答题

已知点F是椭圆右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足,若点P满足
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年黑龙江省高考数学仿真模拟试卷4(文科)(解析版) 题型:解答题

已知点F是椭圆右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足,若点P满足
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案