【题目】已知曲线
:
和
:
(
为参数).以原点
为极点,
轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.
(1)求曲线
的直角坐标方程和
的方程化为极坐标方程;
(2)设
与
,
轴交于
,
两点,且线段
的中点为
.若射线
与
,
交于
,
两点,求
,
两点间的距离.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)若射线
的极坐标方程为
(
).设
与
相交于点
,
与
相交于点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马
中,侧棱
底面
,且
,
为
中点,点
在
上,且
平面
,连接
,
.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅲ)已知
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆
=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足
=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着
网络的普及和智能手机的更新换代,各种方便的
相继出世,其功能也是五花八门.某大学为了调查在校大学生使用
的主要用途,随机抽取了
名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:
①可以估计使用
主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;
②可以估计不足
的大学生使用
主要玩游戏;
③可以估计使用
主要找人聊天的大学生超过总数的
.
其中正确的个数为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
各条棱的长度均相等,
为
的中点,
分别是线段
和线段
的动点(含端点),且满足
,当
运动时,下列结论中不正确的是
![]()
A. 在
内总存在与平面
平行的线段
B. 平面
平面![]()
C. 三棱锥
的体积为定值
D.
可能为直角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的倾斜角为
,且经过点
.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线
,从原点O作射线交
于点M,点N为射线OM上的点,满足
,记点N的轨迹为曲线C.
(Ⅰ)求出直线
的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线
与曲线C交于P,Q两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com