【题目】如图1,在直角梯形
中,
,
,
,
,
,点E在
上,且
,将三角形
沿线段
折起到
的位置,
(如图2).
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在点M,使
平面
?若存在,求出
的值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的普通方程为
,以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(I)求
的参数方程与
的直角坐标方程;
(II)射线
与
交于异于极点的点
,与
的交点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
.
(1)若
为等差数列,且![]()
①求该等差数列的公差
;
②设数列
满足
,则当
为何值时,
最大?请说明理由;
(2)若
还同时满足:
①
为等比数列;
②
;
③对任意的正整数
存在自然数
,使得
、
、
依次成等差数列,试求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间
,9:40~10:00记作
,10:00~10:20记作
,10:20~10:40记作
.例如:10点04分,记作时刻64.
![]()
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布
,其中
可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,
可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设椭圆
的左焦点为
,点
是椭圆与
轴负半轴的交点,经过
的直线
与椭圆交于点
,经过
且与
平行的直线与椭圆交于点
,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出
吨该商品可获利润
万元,未售出的商品,每
吨亏损
万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了
吨该商品.现以
(单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
![]()
(1)将
表示为
的函数,求出该函数表达式;
(2)根据直方图估计利润
不少于57万元的概率;
(3)根据频率分布直方图,估计一个销售季度内市场需求量
的平均数与中位数的大小(保留到小数点后一位).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标
中,圆
,圆
。
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆
的极坐标方程,并求出圆
的交点坐标(用极坐标表示);
(Ⅱ)求圆
的公共弦的参数方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(1)求曲线C1和曲线C2的直角坐标方程;
(2)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com