精英家教网 > 高中数学 > 题目详情

正四棱锥中,,点M,N分别在PA,BD上,且

(Ⅰ)求异面直线MN与AD所成角;

(Ⅱ)求证:∥平面PBC;

(Ⅲ)求MN与平面PAB所成角的正弦值.

 

【答案】

(1)90o

(2)要证明线面平行,则主要证明线线平行即可,结合判定定理得到。

(3)

【解析】

试题分析:(Ⅰ)设AC与BD的交点为O,AB=PA=2。以点O为坐标原点,方向分别是x轴、y轴正方向,建立空间直角坐标系O-xyz.

则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),

设P(0,0,p), 则=(-1,1,p),又AP=2,∴1+1+p2=4,∴p=,

=,

,

,,

,∴异面直线MN与AD所成角为90o

(Ⅱ)∵,

设平面PBC的法向量为="(a,b,c)," ,

= , ∵,∴MN∥平面PBC。      

(Ⅲ)设平面PAB的法向量为="(x,y,z),"

,∴,        

= , cos<> =,

∴MN与平面PAB所成角的正弦值是            

考点:线面平行和线面角的求解

点评:主要是考查了线面的位置关系的运用,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正四棱锥V-ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm,求正四棱锥V-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)在正四棱锥V-ABCD中,P,Q分别为棱VB,VD的中点,点 M 在边 BC 上,且 BM:BC=1:3,AB=2
3
,VA=6.
(I )求证CQ丄AP;
(II)求二面角B-AP-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正四棱锥中,

MN分别在PABD上,且

(Ⅰ)求异面直线MNAD所成角;

(Ⅱ)求证:∥平面PBC

(Ⅲ)求MN与平面PAB所成角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:2012届江苏省第一学期期末考试高二数学试题 题型:解答题

正四棱锥中,

点M,N分别在PA,BD上,且

(Ⅰ)求异面直线MN与AD所成角;

(Ⅱ)求证:∥平面PBC;

(Ⅲ)求MN与平面PAB所成角的正弦值.

 

查看答案和解析>>

同步练习册答案