精英家教网 > 高中数学 > 题目详情
3.已知不等式x2-5ax+b>0的解集为{x|x>4或x<1}.
(Ⅰ)求实数a,b的值;
(Ⅱ)在(Ⅰ)的情况下,若函数f(x)=ax+$\frac{bx+4}{2(x-1)}$(x>1),求f(x)的最小值.

分析 (Ⅰ)由题意可得1和4是方程x2-5ax+b=0的两根,运用韦达定理,即可得到所求值;
(Ⅱ)化简变形函数f(x)=x+$\frac{2x+2}{x-1}$=(x-1)+$\frac{4}{x-1}$+3,运用基本不等式即可得到所求最小值.

解答 解:(Ⅰ)由题意可得1和4是方程x2-5ax+b=0的两根,
即有1+4=5a,1×4=b,解得a=1,b=4;
(Ⅱ)函数f(x)=ax+$\frac{bx+4}{2(x-1)}$(x>1)
=x+$\frac{2x+2}{x-1}$=(x-1)+$\frac{4}{x-1}$+3≥2$\sqrt{(x-1)•\frac{4}{x-1}}$+3=7,
当且仅当x-1=2即x=3时,取得最小值7.

点评 本题考查不等式的解法,注意运用韦达定理求出系数,考查函数的最值的求法,注意运用变形和基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.计算:
(1)(-2015)0+($\frac{3}{2}$)-2•$\root{3}{(3\frac{3}{8})^{2}}$-$\frac{1}{\sqrt{0.01}}$+$\sqrt{{9}^{3}}$;
(2)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某商场2014年一月份到十二月份销售额呈现先下降后上升的趋势,下列函数模型中能较准确反映该商场月销售额f(x)与月份x关系的是(  )
A.f(x)=a•bn(b>0,且b≠1)B.f(x)=lognx+b(a>0,且a≠1)
C.f(x)=x2+ax+bD.f(x)=$\frac{a}{x}+b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2+bln(x+1)在其定义域内既有极大值又有极小值,则实数b的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一船向正北航行,到达B处时,看见正西方向有相距10海里的两个灯塔C、D恰好与它在一条直线上,继续航行1小时后到达A处,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向(如图所示),则这只船的速度是5海里/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点的集合M={(x,y)|xy>0}是指(  )
A.第一象限内点的集合B.第三象限内点的集合
C.第一、三象限内点的集合D.第二、四象限内点的集合

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,四棱锥P-ABCD中,PA⊥平面ABCD,ABCD为正方形,则该四棱锥中互相垂直的平面有6组.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的单调递减区间:
(1)y=3cos(2x+$\frac{π}{3}$);
(2)y=2sin($\frac{π}{3}$-3x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.化简:$\sqrt{1-2sin(π-2)•cos(π-2)}$得(  )
A.sin2+cos2B.cos2-sin2C.sin2-cos2D.±(cos2-sin2)

查看答案和解析>>

同步练习册答案