分析 (1)利用已知条件列出方程组求出a,b即可得到椭圆方程.
(2)利用直线与椭圆联立方程组,通过韦达定理以及弦长公式,点到直线的距离公式,求解三角形的面积即可.
解答 (本小题满分12分)
解:(1)由题意得$\left\{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$解得b=$\sqrt{2}$.
所以椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.
(2)由$\left\{\begin{array}{l}y=x-1\\ \frac{x^2}{4}+\frac{y^2}{2}=1\end{array}\right.$得3x2-4x2-2=0.
设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=$\frac{4}{3}$,x1x2=$-\frac{2}{3}$.
所以|MN|=$\sqrt{({x}_{2}-{x}_{1})^{2}+({y}_{2}-{y}_{1})^{2}}$=$\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2[{{(\frac{4}{3})}^2}+4×\frac{2}{3}]}$=$\frac{{4\sqrt{5}}}{3}$.
又因为点A(2,0)到直线y=x-1的距离$d=\frac{1}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$,
所以△AMN的面积为$S=\frac{1}{2}|{MN}|d=\frac{1}{2}×\frac{{4\sqrt{5}}}{3}×\frac{{\sqrt{2}}}{2}=\frac{{\sqrt{10}}}{3}$.
点评 本题主要考查椭圆的标准方程及其几何性质;直线与圆锥曲线的位置关系,点到直线的距离公式,弦长公式,运算求解能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | -7 | C. | $\frac{1}{7}$ | D. | $-\frac{1}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不必要也不充分条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com