精英家教网 > 高中数学 > 题目详情
16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当k=1时,求△AMN的面积.

分析 (1)利用已知条件列出方程组求出a,b即可得到椭圆方程.
(2)利用直线与椭圆联立方程组,通过韦达定理以及弦长公式,点到直线的距离公式,求解三角形的面积即可.

解答 (本小题满分12分)
解:(1)由题意得$\left\{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$解得b=$\sqrt{2}$.
所以椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.
(2)由$\left\{\begin{array}{l}y=x-1\\ \frac{x^2}{4}+\frac{y^2}{2}=1\end{array}\right.$得3x2-4x2-2=0.
设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=$\frac{4}{3}$,x1x2=$-\frac{2}{3}$.
所以|MN|=$\sqrt{({x}_{2}-{x}_{1})^{2}+({y}_{2}-{y}_{1})^{2}}$=$\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2[{{(\frac{4}{3})}^2}+4×\frac{2}{3}]}$=$\frac{{4\sqrt{5}}}{3}$.
又因为点A(2,0)到直线y=x-1的距离$d=\frac{1}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$,
所以△AMN的面积为$S=\frac{1}{2}|{MN}|d=\frac{1}{2}×\frac{{4\sqrt{5}}}{3}×\frac{{\sqrt{2}}}{2}=\frac{{\sqrt{10}}}{3}$.

点评 本题主要考查椭圆的标准方程及其几何性质;直线与圆锥曲线的位置关系,点到直线的距离公式,弦长公式,运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知sin(π+α)=$\frac{1}{2}$,则cos(α-$\frac{3}{2}$π)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}+cx+d,({c,d∈R})$,函数f(x)的图象记为曲线C.
(1)若函数f(x)在[0,+∞)上单调递增,求c的取值范围;
(2)若函数y=f(x)-m有两个零点α,β(α≠β),且x=α为f(x)的极值点,求2α+β的值;
(3)设曲线C在动点A(x0,f(x0))处的切线l1与C交于另一点B,在点B处的切线为l2,两切线的斜率分别为k1,k2,是否存在实数c,使得$\frac{k_1}{k_2}$为定值?若存在,求出c的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,△PCD为等边三角形,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=$\sqrt{3}$,点E、F分别为AD、CD的中点.
(1)求证:直线BE∥平面PCD;
(2)求证:平面PAF⊥平面PCD;
(3)若PB=$\sqrt{3}$,求直线PB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量,它们的夹角为$\frac{π}{3}$,那么|$\overrightarrow{a}$+3$\overrightarrow{b}$|等于$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$tanθ=\frac{1}{2}$,则$tan({\frac{π}{4}-2θ})$=(  )
A.7B.-7C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知{an}是等比数列,a5=$\frac{1}{2},4{a_3}+{a_7}$=2,则a7=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.Sn为数列{an}的前n项和,已知an>0,an2+an=2Sn
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1表示椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不必要也不充分条件

查看答案和解析>>

同步练习册答案