精英家教网 > 高中数学 > 题目详情
定义:关于x的不等式|x-A|<B的解集叫A的B邻域.已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆的长半轴和短半轴.若此椭圆的一焦点与抛物线的焦点重合,则椭圆的方程为( )
A.
B.
C.
D.
【答案】分析:根据新定义由题意得:|x-(a+b-2)|<a+b的解集为区间(-2,8),从而得到关于 a,b的等量关系,再求得抛物线的焦点坐标,根据椭圆的标准方程,即可求得结论.
解答:解:由题意得:|x-(a+b-2)|<a+b的解集为区间(-2,8),
∵|x-(a+b-2)|<a+b?(-2,2(a+b)-2),
∴2(a+b)-2=8,⇒a+b=5①,
由题意抛物线的焦点坐标为(,0),
由于椭圆的标准方程为 (a>b>0)
则a2-b2=5②
由①②可得a2=9,b2=4
∴椭圆的方程为
故选B.
点评:本小题主要考查绝对值不等式的解法,考查椭圆的标准方程,考查待定系数法的运用,解题的关键是假设椭圆的标准方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆
x2
a2
+
y2
b2
=1
的长半轴和短半轴.若此椭圆的一焦点与抛物线y2=4
5
x
的焦点重合,则椭圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.若a+b-2的a+b邻域为区间(-2,2),则a2+b2的最小值是
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.若a+b-2的a+b邻域为区间(-2,2),则a2+b2的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆
x2
a2
+
y2
b2
=1
的长半轴和短半轴.若此椭圆的一焦点与抛物线y2=4
5
x
的焦点重合,则椭圆的方程为(  )
A.
x2
8
+
y2
3
=1
B.
x2
9
+
y2
4
=1
C.
x2
9
+
y2
8
=1
D.
x2
16
+
y2
9
=1

查看答案和解析>>

同步练习册答案