精英家教网 > 高中数学 > 题目详情
若对n个向量
a1
a2
,…
an
存在n个不全为零的实数k1,k2,…,kn,使得k1
a1
+k2
a2
+…,kn
an
=成立,则称向量
a1
a2
,…
an
为“线性相关”.依此规定,能说明
a1
=(1,2),
a2
=(1,-1),
a3
=(2,2)“线性相关”的实数k1,k2,k3依次可以取
 
(写出一组数值即中,不必考虑所有情况).
分析:利用题中的定义设出方程,利用向量的坐标运算得到方程组,给其中一个未知数赋值求出方程组的一个解.
解答:解:设k1
a1
+k2
a2
+k3
a3
=
0

k1+k2 +2k3=0
2k1-k2+2k3=0

当k3=1时,k1=-
4
3
,k2=-
2
3

故答案为-
4
3
,-
2
3
,1
点评:本题考查理解题中给的新定义、向量的坐标运算、平面向量的基本定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东坡区一模)已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量
BC
=(1,2).
(1)求数列{an},{bn}的通项公式;
(2)设cn=2 bn,在ak与ak+1之间插入k个ck,依次构成新数列,试求该数列的前2013项之和;
(3)对任意正整数n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正数a的范围.

查看答案和解析>>

科目:高中数学 来源:东坡区一模 题型:解答题

已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量
BC
=(1,2).
(1)求数列{an},{bn}的通项公式;
(2)设cn=2 bn,在ak与ak+1之间插入k个ck,依次构成新数列,试求该数列的前2013项之和;
(3)对任意正整数n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正数a的范围.

查看答案和解析>>

科目:高中数学 来源:2013年四川省眉山市高考数学一模试卷(理科)(解析版) 题型:解答题

已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量=(1,2).
(1)求数列{an},{bn}的通项公式;
(2)设cn=2,在ak与ak+1之间插入k个ck,依次构成新数列,试求该数列的前2013项之和;
(3)对任意正整数n,不等式(1+)(1+)•…•(1+)-a≥0恒成立,求正数a的范围.

查看答案和解析>>

同步练习册答案