精英家教网 > 高中数学 > 题目详情
若f′(x0)=2,则
lim
k→0
f(x0-k)-f(x0)
2k
的值为(  )
A、-2B、2C、-1D、1
分析:把极限符号后面的代数式变形,把函数增量变为-k,结合极限运算求得答案.
解答:解:∵f′(x0)=2,
lim
k→0
f(x0-k)-f(x0)
2k

=
lim
k→0
-
1
2
f(x0-k)-f(x0)
-k

=-
1
2
lim
k→0
f(x0-k)-f(x0)
-k

=-
1
2
f′(x0)=-
1
2
×2
=-1.
故选:C.
点评:本题考查了极限运算,考查了导数的概念,关键是对导数概念的理解,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x,x≤0
log2(x+2),x>0
,若f(x0)≥2,则x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f′(x0)=2,则
lim
k→0
f(x0-k)-f(x0)
2k
等于(  )
A、-1
B、-2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=xlnx,若f′(x0)=2,则x0=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f′(x0)=2,则
lim
△x→∞
f(x0)-f(x0+△x)
2△x
等于(  )
A、-1
B、-2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若f′(x0)=2,则
lim
k→ 0
f(x0-k)-f(x0
2k
=
 

查看答案和解析>>

同步练习册答案