精英家教网 > 高中数学 > 题目详情
设α∈(0,
π
2
),若sinα=
3
5
,则
2
cos(α+
π
4
)=
 
分析:由α∈(0,
π
2
),若sinα=
3
5
,根据同角三角函数的基本关系求出cosα的值,然后把所求的式子利用两角和的余弦函数公式及特殊角的三角函数值化简后,将sinα和cosα的值代入即可求出值.
解答:解:由α∈(0,
π
2
),若sinα=
3
5
,得到cosα=
1-(
3
5
)
2
=
4
5

2
cos(α+
π
4
)=
2
2
2
cosα-
2
2
sinα)=
4
5
-
3
5
=
1
5

故答案为:
1
5
点评:此题考查学生灵活运用同角三角函数间的基本关系及两角差的余弦函数公式化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
-cos2(x+
π
4
)+sin(x+
π
4
)cos(x+
π
4
)

(I)求函数f(x)的最大值和周期;
(II)设角α∈(0,2π),f(α)=
2
2
,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为4
2

(I)求动点M轨迹C的方程;
(II)设N(0,2),过点P(-1,-2)作直线l,交椭圆C异于N的A、B两点,直线NA、NB的斜率分别为k1、k2,证明:kl+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈(0,
π
2
),则下列所有正确结论的序号为
②⑥
②⑥

①sinx
2
π
x;②sinx
2
π
x;③sinx
3
π
x;④sinx
3
π
x;⑤sinx
4
π2
x2; ⑥sinx
4
π2
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;
(2)设a∈(0,
π
2
),则f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知点A(2,0),B(0,-2),F(-2,0),设∠AOC=α,α∈[0,2π),其中O为坐标原点.
(Ⅰ)设点C到线段AF所在直线的距离为
3
,且∠AFC=
π
3
,求α和线段AC的大小;
(Ⅱ)设点D为线段OA的中点,若|
OC
|=2
,且点C在第二象限内,求M=(
3
DC
OB
+
BC
OA
)cosα的取值范围.

查看答案和解析>>

同步练习册答案