精英家教网 > 高中数学 > 题目详情

(I)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;

(II)试用(I)的结果证明如下命题:

设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2

(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题。注:当α为正有理数时,有求道公式(xαr=αxα-1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•大连二模)(I)已知函数f(x)=x-
1
x
,x∈(
1
4
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
图象上的任意两点,且x1<x2
①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;
②由①你得到的结论是:若函数f(x)在[a,b]上有导函数f′(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)
(II)设函数g(x)的导函数为g′(x),且g′(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:
当x∈(0,1)时,f(1)x<g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州模拟)已知函数f(x)=ax2+bx+1(a、b为实数),若f(-1)=0且函数f(x)的值域为[0,+∞).
(I)求函数f(x)的解析式;
(II)设F(x)=xf(x),求曲线F(x)在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)(I)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;
(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2
(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求道公式(xαr=αxα-1

查看答案和解析>>

科目:高中数学 来源:2012年湖北省高考数学试卷(理科)(解析版) 题型:解答题

(I)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;
(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2
(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求道公式(xαr=αxα-1

查看答案和解析>>

同步练习册答案