精英家教网 > 高中数学 > 题目详情
n=5是(2
x
+
1
3x
)n
(n∈N+)的展开式中含有常数项的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
分析:利用二项展开式的通项公式求出展开式的通项,通过举反例说明后者推不出前者;通过令x的指数为0,能求出r的值,说明前者能推出后者;利用充要条件的定义判断出结论.
解答:解:展开式的通项为Tr+1=2n-r
C
r
n
x
3n-5r
6

当n=2时,r=0时为常数项,
(2
x
+
1
3x
)
n
的展开式中含有常数项
推不出n=5;
反之,当n=5时,
3n-5r
6
=
15-5r
6
=0得r=3,
即展开式的第4项为常数项.
故n=5是(2
x
+
1
3x
)
n
的展开式中含有常数项的充分不必要条件.
故选A.
点评:本题考查二项展开式的通项公式、考查要说明一个命题不成立常举出一个反例即可、考查利用充要条件的定义判断一个命题是另一个命题的什么条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下五个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
12

(5)已知m,n是两条不重合的直线,α,β是两个不重合的平面,若m⊥α,n∥β且m⊥n,则α⊥β;其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期 12月1日 12月2日 12月3日 12月4日 12月5日
温差x(°C) 10 11 13 12 8
发芽数y(颗) 23 25 30 26 16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
y
=bx+a

参考公式:
b
=
n
i=1
(xi-
.
x
)  (yi-
.
y
n
i=1
(xi-
.
x
2
=
n
i=1
xi yi-n 
.
x
.
y
n
i=1
x
2
i
-n
-2
x
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①△ABC中,若A<B,则cos2A<cos2B;
②若A,B,C为△ABC的三个内角,则
4
A
+
1
B+C
的最小值为
9
π

③已知an=sin
6
+
16
2+sin
6
(n∈N*),则数列{an}中的最小项为
19
3

④若函数f(x)=log2(x+1),且0<a<b<c,则
f(a)
a
f(b)
b
f(c)
c

⑤函数f(x)=
x2-2x+5
+
x2-4x+13
的最小值为
29

其中所有正确命题的序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与医院抄录1至6月份每月10号的昼夜温差情况与患感冒而就诊的人数,得到如下资料:
日    期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
昼夜温差x(℃) 10 11 13 12 8 6
就诊人数y(个) 22 25 29 26 16 12
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
y
=bx+a;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考公式:线性回归方程的系数公式为b=
n
i-1
x
i
y
i
-n
.
x
.
y
n
i-1
x
2
i
-n
-2
x
=
n
i-1
(xi-
.
x
)(yi-
.
y
)
n
i-1
(xi-
.
x
)
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中所有正确的序号是
(1)(3)(4)
(1)(3)(4)

(1)A=B=N,对应f:x→y=(x+1)2-1是映射;
(2)函数f(x)=
x2-1
+
1-x2
y=
x-1
+
1-x
都是既奇又偶函数;
(3)已知对任意的非零实数x都有f(x)+2f(
1
x
)=2x+1
,则f(2)=-
1
3

(4)函数f(x-1)的定义域是(1,3),则函数f(x)的定义域为(0,2);
(5)函数f(x)在(a,b]和(b,c)上都是增函数,则函数f(x)在(a,c)上一定是增函数.

查看答案和解析>>

同步练习册答案