精英家教网 > 高中数学 > 题目详情
18.下列四个函数中,最小正周期为π,且关于直线x=-$\frac{5π}{12}$对称的函数是(  )
A.y=sin($\frac{x}{2}+\frac{π}{3}$)B.y=sin($\frac{x}{2}-\frac{π}{3}$)C.y=sin(2x-$\frac{π}{3}$)D.y=sin(2x+$\frac{π}{3}$)

分析 由周期求出ω,由函数的图象的对称性求出φ的值,可得函数的解析式.

解答 解:对于函数y=sin(ωx+φ),由最小正周期为$\frac{2π}{ω}$=π,求得ω=2,
再根据它的图象直线x=-$\frac{5π}{12}$对称,可得2•(-$\frac{5π}{12}$)+φ=kπ+$\frac{π}{2}$,k∈Z,
即φ=kπ+$\frac{4π}{3}$,故可取φ=$\frac{π}{3}$,y=sin(2x+$\frac{π}{3}$),
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由函数的图象的对称性求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.A={(x,y)|x-y=3},B={(x,y)|3x+y=1},那么A∩B={(1,-2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)设全集U={不大于20的质数},且A∩(∁UB)={3,5},(∁UA)∩B={7,11},(∁UA)∩(∁UB)={2,17},请绘制韦恩图求出集合A,B;
(2)利用(1)题中的韦恩图解决下面问题:
向50名学生调查对A,B两观点的态度,结果如下:赞成观点A的人数是全体的$\frac{3}{5}$,其余的不赞成;赞成观点B的比赞成观点A的多3人,其余的不赞成;另外,对观点A,B都不赞成的学生比对观点A,B都赞成的学生的$\frac{1}{3}$多1人.问:对观点A,B都赞成的学生有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知U=R,集合A={x|1≤x≤4},B={x|6-a≤x≤2a-1}.
(Ⅰ)若a=3,求A?B,B?(CUA);
(Ⅱ)若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,已知a3+a5+a7+a9+a11=180,则a7的值为(  )
A.30B.36C.48D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知各项均为正数的等比数列{an},a4a5a6=8,a10a11a12=12,则a7a8a9=(  )
A.6$\sqrt{6}$B.9C.10D.4$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=-x2,则下列命题中为真命题的是(  )
A.¬p∧¬qB.p∧¬qC.¬p∧qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义:在数列{an}中,若满足$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}-\frac{{{a_{n+1}}}}{a_n}=d$,(d为常数),我们称{an}为“比等差数列”.已知在“比等差数列”{an}中,a1=a2=1,a3=2,则$\frac{{{a_{2014}}}}{{{a_{2011}}}}$的末位数字是(  )
A.6B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x2-2x+2,x∈[-5,5]的值域为[1,37].

查看答案和解析>>

同步练习册答案