精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=3,且对任意大于1的正整数n,点(
an
an-1
)在直线2x-2y-
3
=0上,则an=(  )
分析:因为(
an
an-1
)在直线2x-2y-
3
=0上,所以2
an
-2
an-1
-
3
=0
,所以数列{
an
}是等差数列,通过数列{
an
}的通项公式,求出an
解答:解:因为(
an
an-1
)在直线2x-2y-
3
=0上,
所以2
an
-2
an-1
-
3
=0

整理得
an
-
an-1
=
3
2

所以数列{
an
}是等差数列,公差为
3
2
首项为
a1
=
3

所以数列{
an
}的通项公式为
an
=
3
+(n-1)×
3
2
=
3
(n+1)
2

所以an=
3
4
(n+1)2

故选D
点评:本题考查数列递推公式与通项公式,考查转化构造,运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案