精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)为定义在R上的奇函数,且f(x)在[0,+∞)上单调递增,若f(a)<f(2a-1),则a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

分析 根据函数是奇函数,且在[0,+∞)单调递增,得到函数在R上单调递增,利用函数的单调性解不等式即可得到结论.

解答 解:∵f(x)是定义在R上的奇函数,且在[0,+∞)单调递增,
∴函数在R上单调递增,
若f(a)<f(2a-1),则a<2a-1,
解得:a∈(1,+∞),
故选:D

点评 本题重点考查函数的奇偶性、单调性,考查解抽象不等式,解题的关键是利用函数的性质化抽象不等式为具体不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.当0≤x≤2,a<-x2+2x恒成立,则实数a的取值范围是(-∞,0)).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y=ax2上一点P(1,2)到它的准线的距离为$\frac{17}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{∫}_{x}^{0}(2t+2-{e}^{t})dt,x≤0}\end{array}\right.$,则函数h(x)=f(x)+1有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知2sinxtanx=3,(-π<x<0),则x=(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$-\frac{5π}{6}$D.$-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{1}&{-1}\\{z}&{zi}\end{array}|$=4+2i的复数z的共轭复数$\overline{z}$为(  )
A.3-iB.1+3iC.3+iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数x满足9x-4×3x+1+27≤0且f(x)=(log2$\frac{x}{2}$)(log${\;}_{\sqrt{2}}$$\frac{\sqrt{x}}{2}$).
(Ⅰ)求实数x的取值范围;
(Ⅱ)求f(x)的最大值和最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知c>0,设p:函数y=lg[(1-c)x-1]在其定义域内为增函数,q:不等式x+|x-2c|>1的解集为R,若“p∨q”为真,“p∧q”为假,求实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.各项都是正数的等比数列{an}的公比q≠1,a3,a5,a6成等差数列,则$\frac{{{a_3}+{a_4}}}{{{a_4}+{a_5}}}$=(  )
A.$\frac{{-1+\sqrt{3}}}{2}$B.$\frac{{-1+\sqrt{5}}}{2}$C.$\frac{{1+\sqrt{5}}}{2}$D.$2+\sqrt{5}$

查看答案和解析>>

同步练习册答案