精英家教网 > 高中数学 > 题目详情
(2009•普陀区二模)已知等轴双曲线C:x2-y2=a2(a>0)的右焦点为F,O为坐标原点. 过F作一条渐近线的垂线FP且垂足为P,|
OP
| =
2

(1)求等轴双曲线C的方程;
(2)假设过点F且方向向量为
d
=(1,2)
的直线l交双曲线C于A、B两点,求
OA
OB
的值;
(3)假设过点F的动直线l与双曲线C交于M、N两点,试问:在x轴上是否存在定点P,使得
PM
PN
为常数.若存在,求出点P的坐标;若不存在,试说明理由.
分析:(1)根据双曲线为等轴双曲线,可求出渐近线方程,再根据P点为过F作一条渐近线的垂线FP的垂足,以及|
OP
| =
2
,可求出双曲线中c的值,借助双曲线中a,b,c的关系,得到双曲线方程.
(2)根据直线l的方向向量以及f点的坐标,可得直线l的方程,与双曲线方程联立,解出x1+x2,x1x2的值,代入
OA
OB
中,即可求出
OA
OB
的值.
(3)先假设存在定点P,使得
PM
PN
为常数,设出直线l的方程,与双曲线方程联立,解x1+x2,x1x2,用含k的式子表示,再代入
PM
PN
中,若
PM
PN
为常数,则结果与k无关,求此时m的值即可.
解答:解:(1)设右焦点坐标为F(c,0),(c>0),
∵双曲线为等轴双曲线,∴渐近线必为y=±x
由对称性可知,右焦点F到两条渐近线距离相等,且∠POF=
π
4

∴△OPF为等腰直角三角形,则由|
OP
|=
2
⇒|
OF
|=c=2
又∵等轴双曲线中,c2=2a2⇒a2=2
∴等轴双曲线C的方程为x2-y2=2
(2)设A(x1,y1),B(x2,y2)为双曲线C与直线l的两个交点
∵F(2,0),直线l的方向向量为
d
=(1,2),
∴直线l的方程为
x-2
1
=
y
2
,即y=2(x-2)
代入双曲线C的方程,可得,x2-4(x-2)2=2⇒3x2-16x+18=0
∴x1+x2=
16
3
,x1x2=6,
OA
OB
=x1x2+y1y2=x1x2+(x1-2)(x2-2)=5x1x2-8(x1+x2)+16=
10
3

(3)假设存在定点P,使得
PM
PN
为常数,
其中,M(x1,y1),N(x2,y2)为双曲线C与直线l的两个交点的坐标,
①当直线l与x轴不垂直是,设直线l的方程为y=k(x-2),
代入双曲线C的方程,可得(1-k2)x2+4k2x-(4k2+2)=0
由题意可知,k=±1,则有x1+x2=
4k2
k2-1
,x1x2=
4k2+2
k2-1

PM
PN
=(x1-m)(x2-m)+k2(x1-2)(x2-2)
=(4k2+1)x1x2-(2k2+m)(x1+x2)+4k2+m2
=
(k2+1)(4k2+2)
k2-1
-
4k2(2k2+m)
k2-1
+4k2+m2
=
2(1-2m)k2+2
k2-1
+m2=
4(1-m)
k2-1
+m2+2(1-2m)
要使
PM
PN
是与k无关的常数,当且仅当m=1,此时,
PM
PN
=-1
②当直线l与x轴垂直时,可得点M(2,
2
),N(2,-
2

若m=1,
PM
PN
=-1亦为常数
综上可知,在x轴上是否存在定点P(1,0),使得
PM
PN
=-1为常数.
点评:本题考查了等轴双曲线的方程的求法,以及直线与双曲线位置关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•普陀区二模)在△ABC中,“cosA=2sinBsinC”是“△ABC为钝角三角形”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区二模)关于x、y的二元线性方程组
2x+my=5
nx-3y=2
的增广矩阵经过变换,最后得到的矩阵为
103
011
,则x+y=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区二模)设数列{an}的前n项和为Sna3=
1
4
.对任意n∈N*,向量
a
=(1,an)
b
=(an+1
1
2
)
满足
a
b
,求
lim
n→∞
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区二模)关于x、y的二元线性方程组
2x+my=5
nx-3y=2
 的增广矩阵经过变换,最后得到的矩阵为
10  3
01  1
m
n
=
-1
5
3
-1
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区二模)若n∈N*(1+
2
)
n
=
2
an+bn
(an、bn∈Z).
(1)求a5+b5的值;
(2)求证:数列{bn}各项均为奇数.

查看答案和解析>>

同步练习册答案