精英家教网 > 高中数学 > 题目详情
4.已知表面积为24π的球体,其内接正四棱柱(底面是正方形,侧棱垂直于底面)的高为4,则这个正四棱柱的侧面积为(  )
A.32B.36C.48D.64

分析 先由球的表面积求出球的半径,由此能求出其内接正四棱柱的底面边长,从而能求出这个正四棱柱的侧面积.

解答 解:设表面积为24π的球体的半径为R,则4πR2=24π,解得R=$\sqrt{6}$,
∵其内接正四棱柱(底面是正方形,侧棱垂直于底面)的高为4,
设这个正四棱柱的底面边长为a,
∴$\sqrt{{a}^{2}+{a}^{2}+{4}^{2}}$=2$\sqrt{6}$,解得a=2,
∴这个正四棱柱的侧面积S=4×2×4=32.
故选:A.

点评 本题考查正四棱柱的侧面积的求法,是基础题,解题时要认真审题,注意球的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若函数f(x)满足:在定义域D内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)为“1的饱和函数”.给出下列四个函数:①f(x)=$\frac{1}{x}$;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的饱和函数”的所有函数的序号为(  )
A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在的直线所成角的余弦值等于$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求直线AF与平面BCF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.
(1)若∠EDO=30°,求∠AOD;
(2)求证:DE•BC=DM•AC+DM•AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求PC与平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.
(1)求证:DA1⊥ED1
(2)若直线DA1与平面CED1成角为45°,求$\frac{AE}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,F为BD中点,连接AF交CH于点E,
(Ⅰ)求证:∠BCF=∠CAB;
(Ⅱ)若FB=FE=1,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知满足ln(a+b)=lna+lnb,ln(a+b+c)=lna+lnb+lnc,则c的取值范围是(1,$\frac{4}{3}$].

查看答案和解析>>

同步练习册答案