分析 令2x=t,由-3≤x≤2,可得$\frac{1}{8}$≤t≤4,y=t2-t+1,t∈[$\frac{1}{8}$,4].再利用二次函数的性质求得y的最大值.
解答 解:y=(2x)2-2x+1,令2x=t,
∵-3≤x≤2,∴$\frac{1}{8}$≤2x≤4,
∴y=t2-t+1,t∈[$\frac{1}{8}$,4].
由于函数 y=(t-$\frac{1}{2}$)2+$\frac{3}{4}$的对称轴为 t=$\frac{1}{2}$,
∴当t=4时,ymax=16-4+1=13,
故答案为:13.
点评 本题主要考查复合函数的单调性,二次函数的性质的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x2-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{2}$-y2=1 | ||
| C. | x2-$\frac{{y}^{2}}{2}$=1或y2-$\frac{{x}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-y2=1或$\frac{{y}^{2}}{2}$-x2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com