(09年海淀区二模理)(14分)已知定义域为,满足:
①;
②对任意实数,有.
(Ⅰ)求,的值;
(Ⅱ)求的值;
(Ⅲ)是否存在常数,使得不等式对一切实数成立.如果存在,求出常数的值;如果不存在,请说明理由.解析:(Ⅰ)取,得,即.
因为,所以. ………………………………………1分
取,得.因为,所以.
取,得,所以.
…………………………………3分
(Ⅱ)在中取得.
所以.
在中取,得.
在中取,
得.
所以.
在中取,
得.
所以.
在中取,
得
.
所以对任意实数均成立.
所以. ………………………………9分
(Ⅲ)由(Ⅱ)知,
在中,
取,得,即 ①
取,得 ②
取,得,即 ③
②+①得,②+③得.
.
将代入①得.
将代入②得.
.
由(Ⅱ)知,所以对一切实数成立.
故当时,对一切实数成立.
存在常数,使得不等式对一切实数成立,且为满足题设的唯一一组值. ………………………………………14分
说明:其它正确解法按相应步骤给分.
科目:高中数学 来源: 题型:
(09年海淀区二模理)(13分)
已知抛物线C:,过定点,作直线交抛物线于(点在第一象限).
(Ⅰ)当点A是抛物线C的焦点,且弦长时,求直线的方程;
(Ⅱ)设点关于轴的对称点为,直线交轴于点,且.求证:点B的坐标是并求点到直线的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年海淀区二模理)(13分)
检测部门决定对某市学校教室的空气质量进行检测,空气质量分为A、B、C三级. 每间教室的检测方式如下:分别在同一天的上、下午各进行一次检测,若两次检测中有C级或两次都是B级,则该教室的空气质量不合格. 设各教室的空气质量相互独立,且每次检测的结果也相互独立. 根据多次抽检结果,一间教室一次检测空气质量为A、B、C三级的频率依次为.
(Ⅰ)在该市的教室中任取一间,估计该间教室的空气质量合格的概率;
(Ⅱ)如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为,并以空气质量为A级的频率作为空气质量为A级的概率,求的分布列及期望查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com