精英家教网 > 高中数学 > 题目详情
若函数y=
g(x),x>0
f(x),x<0
是奇函数,当x>0时,其对应的图象如图所示,则f(x)等于
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:首先根据函数的图象求出函数g(x)的解析式,进一步利用函数是奇函数求出函数f(x)的解析式.
解答: 解:如图所示:设函数g(x)的解析式为g(x)=kx+b,函数图象经过(0,-3)和(
3
2
,0)
则解得:g(x)=2x-3
由于y=
g(x),x>0
f(x),x<0
是奇函数.
则:f(x)=-g(-x)=2x+3
故答案为:f(x)=2x+3(x<0)
点评:本题考查的知识要点:函数解析式的确定,奇函数性质的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(
1
2
,0)和圆Q:4x2+4x+4y2=0,圆E过点F且与圆Q内切,求圆心E的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

求1.02δ的近似值(精确到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)记f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C满足条件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λ•μ=
3
16
,则双曲线的离心率为(  )
A、
2
3
3
B、
3
5
5
C、
3
2
2
D、
9
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx+cos2x-
1
2

(Ⅰ)求函数f(x)的最小正周期T;
(Ⅱ)把f(x)的图象向左平移
π
12
个单位,得到的图象对应的函数为g(x),求函数g(x)在[0,
π
4
]的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆E:(x+
3
)2+y2
=16,点F(
3
,0)
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)设直线l与(Ⅰ)中轨迹Γ相交于A,B两点,直线OA,l,OB的斜率分别为k1,k,k2(其中k>0).△OAB的面积为S,以OA,OB为直径的圆的面积分别为S1,S2.若k1,k,k2恰好构成等比数列,求
S1+S2
S
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
2016x+1-2014
2016x+1
(x∈[-a,a])的最大值为M,最小值为N,M+N=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若a1=1,Sn-
1
2
an+1
=0(n∈N*),则{an}的通项公式为
 

查看答案和解析>>

同步练习册答案