精英家教网 > 高中数学 > 题目详情
18.已知数列{an}对任意的p,q∈N*满足:ap+q=2ap+2aq(p≠q),且a1=1,a2=4,那么an=-2+3•2n-1

分析 当n≥3时,利用an=2an-1+2整理可知数列{an+2}(n≥2)是以6为首项、以2为公比的等比数列,进而计算可得结论.

解答 解:依题意,当n≥3时,an=2an-1+2,
∴an+2=2(an-1+2),
又∵a2+2=4+2=6,
∴数列{an+2}(n≥2)是以6为首项、以2为公比的等比数列,
∴an+2=6•2n-2=3•2n-1
∴an=-2+3•2n-1(n≥2),
又∵a1=1满足上式,
∴an=-2+3•2n-1
故答案为:-2+3•2n-1

点评 本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若直角坐标平面内的两个不同点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(注:点对[P,Q]与[Q,P]看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,则此函数的“友好点对”有(  ) 对.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.关于直线a,b,c以及平面α,β,给出下列命题:
①若a∥α,b∥α,则a∥b
②若a∥α,b⊥α,则a⊥b
③若a?α,b?α,且c⊥a,c⊥b,则c⊥α
④若a⊥α,a∥β,则α⊥β.
其中错误的命题是(  )
A.①②B.②④C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果一个水平放置的图形的斜二测直观图是一个边长为a的正方形,那么原平面四边形的面积等于(  )
A.$\frac{{\sqrt{2}}}{4}a$2B.$\frac{{\sqrt{2}}}{2}a$2C.$2\sqrt{2}a$2D.$\frac{{2\sqrt{2}}}{3}a$2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设各项均为正数的数列{an}的前n项和为Sn,已知数列{$\sqrt{{S}_{n}}$}是首项为1,公差为1的等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令$\frac{1}{{b}_{n}}$=an•an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,阴影部分是由曲线y=x2(x>0)与圆(x-1)2+y2=1构成的区域,在圆中任取一点M,则M点落在阴影部分区域的概率为$\frac{1}{4}$-$\frac{1}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$A_{2n}^3=9A_n^3$,则n等于(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x+y=-1且x<0,y<0,求xy+$\frac{1}{xy}$的最小值$\frac{17}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知由样本数据点集合{(xi,yi)|i=1,2,…n}求得的回归直线方程为$\widehat{y}$=1.5x+0.5,且$\overline{x}$=3,现发现两个数据点(2.2,2.9)和(3.8,7.1)误差较大,去除后重新求得的回归直线l的斜率为1.2.那么,当x=4时,y的估计值为6.2.

查看答案和解析>>

同步练习册答案