精英家教网 > 高中数学 > 题目详情

已知圆G:x2+y2—2x—,经过椭圆(a>b>0)的右焦点F及上顶点B,过椭圆外一点M(m,0)(m>0)的倾斜角为的直线l交椭圆于C、D两点.

(Ⅰ)求椭圆方程

(Ⅱ)当右焦点在以线段CD为直径的圆E的内部,求实数m的范围。                                     

(1) 2)  析】本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的综合运用。

(1)因为椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切.

结合椭圆的性质和线与圆的位置关系得到参数a,b,c的表达式,得到椭圆的方程。

(2)根据直线方程与椭圆方程联立方程组,结合韦达定理表示出点P的坐标,然后点P在椭圆上得到参数的关系式,,利用m的范围得到op 的范围。

解:(1)由得,所以……………………1分

所以,有,解得………..5分

所以,所以椭圆方程为  …………………………….6分

(2),   消去得:

设则, ,

故点…………………………………………………9分

点在椭圆上,有,整理得

所以,而  ,…11分

因为 所以,所以,所以…12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆G:x2+y2-2x-
2
y=0,经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为
6
的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(ma)且倾斜角为
5
6
π
的直线l交椭圆于C,D两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若
FC
FD
<0
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆G:x2+y2-2x-
2
y=0经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.过点M(m,0)作倾斜角为
5
6
π
的直线l交椭圆于C、D两点.
(1)求椭圆的方程;
(2)若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
5
6
π
的直线l交椭圆于C、D两点,若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆G:x2+y2-2
2
x-2y=0经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
2
3
π
的直线l交椭圆于C、D两点,若点N(3,0)在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

同步练习册答案