精英家教网 > 高中数学 > 题目详情
14.已知全集U=R,A={x|x>0},B={x|x≤-1},则集合∁U(A∪B)=(  )
A.{x|x≥-1}B.{x|x≤1}C.{x|-1<x≤0}D.{x|0<x<1}

分析 先求出A∪B,再求出其补集即可.

解答 解:∵A={x|x>0},B={x|x≤-1},
∴A∪B={x|x>0或x≤-1},
∴CU(A∪B)={x|-1<x≤0},
故选:C.

点评 本题考查了集合的并集、补集的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|mx2+2$\sqrt{2}$x-2≤0},B={x|mx2+2$\sqrt{2}$x+1≥0},且A∩B有且仅有一个元素,则实数m的取值的集合为{-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.两平行直线kx+6y+2=0与4x-3y+4=0之间的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)为定义在R上的偶函数,当x≥0时,f(x)=2x-2,则不等式f(x-1)≤6的解集是[-2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|$\frac{2x+1}{x-2}>1$},B={x|1<2x<8},则A∩B等于(  )
A.(2,3)B.(-3,3)C.(0,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是定义在R上的奇函数,且f(x)在[0,+∞)上为增函数,如果f(x2+ax+a)≤f(-at2-t+1)对任意x∈[1,2],任意t∈[1,2]恒成立,则实数a的最大值是(  )
A.-1B.$-\frac{1}{3}$C.$-\frac{{\sqrt{2}}}{4}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设A是由有限个正整数组成的集合,若存在两个集合B,C满足:①B∩C=∅;
②B∪C=A;③B的元素之和等于C的元素之和,则称集合A“可均分”.
(1)证明:集合A={1,2,3,4,5,6,7,8}“可均分”;
(2)证明:集合A={2015+1,2015+2,…,2015+93}“可均分”;
(3)求出所有的正整数k,使得A={2015+1,2015+2,…,2015+k}“可均分”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个正四棱锥的侧棱长都相等,底面是正方形,其正(主)图如图所示,则该四棱锥侧面积是(  )
A.180B.120C.60D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\left\{\begin{array}{l}{x+1,}&{x≤-1}\\{{x}^{2},}&{-1<x<2}\\{2x,}&{x≥2}\end{array}\right.$
(1)若f(a)=3,求实数a的值.
(2)分别写出函数f(x)的单调递增区间和单调递减区间.

查看答案和解析>>

同步练习册答案