精英家教网 > 高中数学 > 题目详情

已知a≤1,若fx)=ax22x+1在[1,3]上的最大值为M(a),最小值为N(a),令ga)=M(a)- N(a)。

(1)求ga)的解析式;

(2)当a ≤ 1时,求函数ga)的最小值。

(1)……………………………………2分

  ……………………………………………8分

(2)当a≤1时, =g()=,………………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数学公式≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判断g(a)单调性,求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省淄博市沂源一中高一(上)第三次月考数学试卷(B卷)(解析版) 题型:解答题

已知≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判断g(a)单调性,求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市某中学高三(上)9月月考数学试卷(解析版) 题型:解答题

已知≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判断g(a)单调性,求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省佛山市龙山中学高一(上)期中数学试卷(解析版) 题型:解答题

已知≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判断g(a)单调性,求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省荆州中学高三(上)9月月考数学试卷(文科)(解析版) 题型:解答题

已知≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判断g(a)单调性,求g(a)的最小值.

查看答案和解析>>

同步练习册答案