精英家教网 > 高中数学 > 题目详情
下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π.
②终边在y轴上的角的集合是{a|a=
2
,k∈Z
|.
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点.
④把函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
得到y=3sin2x的图象
⑤函数y=sin(x-
π
2
)
在(0,π)上是减函数
其中真命题的序号是
 
((写出所有真命题的编号))
分析:①函数y=sin4x-cos4x=-cos2x,可求其最小正周期是π;
②终边在y轴上的角的集合是{a|a=kπ+
π
2
,k∈Z
};
③构造函数g(x)=x-sinx可以利用导数法导数法判断;
④准确把握三角函数的图象平移即可判断;
⑤可以将y=sin(x-
π
2
)
转化为y=-cosx即可迅速作出判断.
解答:解:∵函数y=sin4x-cos4x=-cos2x,最小正周期是T=π,故①正确;
终边在y轴上的角的集合是{a|a=kπ+
π
2
,k∈Z
};故②不正确;
y=sinx
y=x
得sinx=x,令g(x)=x-sinx,g′(x)=1-cosx≥0,故g(x)=x-sinx在R上单调递增,当x=0时g′(0)=0,
∴g(x)min=g(0)=0,即在同一坐标系中,函数y=sinx的图象和函数y=x的图象有一个公共点,故③不正确,
函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
得到y=3sin[2(x-
π
6
)+
π
3
]
=3sin2x,故④正确;
y=sin(x-
π
2
)
=-cosx在(0,π)上是增函数,故⑤不正确.
故答案为:①④.
点评:本题考查三角函数的图象与性质,难点在于对③的判断,可以通过导数法解决,该题综合性强,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π.
②终边在y轴上的角的集合是{a|a=
2
,k∈Z}.
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点.
④把函数y=3sin(2x+
π
3
)的图象向右平移
π
6
得到y=3sin2x的图象
⑤函数y=sin(x-
π
2
)在(0,π)上是减函数.
其中真命题的序号是
 
(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π.
②终边在直线y=±x上的角的集合是{α|α=
2
+
π
4
,k∈Z}

③函数y=sin(x+
π
3
)
的图象向右平移
π
6
得到y=3sin2x的图象
④函数y=sin(x-
π
2
)在[0,π]
上是减函数.
⑤连续函数f(x)定义在[2,4]上,若有f(2)•f(4)>0,要用二分法求f(x)的一个零点,精确度为0.1,则最多将进行5次二等分区间.
其中,真命题的编号是
①②⑤
①②⑤
(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是2π;
②终边在y轴上的角的集合是{a|a=
2
,k∈z};
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有一个公共点;
④把函数y=3sin(2x+
π
3
)的图象向右平移
π
6
得到y=3sin2x的图象;
⑤在△ABC中,若acosB=bcosA,则△ABC是等腰三角形;
其中真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π;
②终边在y轴上的角的集合是 {a|a=
2
,k∈Z}

③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④把函数y=3sin(2x+
π
3
)
的图象向右平移
π
6
个单位得到y=3sin2x的图象;
⑤函数y=sin(x-
π
2
)
在〔0,π〕上是减函数;
其中真命题的序号是(  )

查看答案和解析>>

同步练习册答案