设函数
是实常数, 如果函数
在区间(-1, 1)上有
解析:当a=0时, 则f(x)=4x-3, 此时f(x)的零点为
∈(-1, 1), 故a=0满足题设.
当a≠0时, 令△=16+8a(3+a)=0, 即a2+3a+2=0 解得a= -1或-2
(1)当a= -1时, 此时f(x)= -2x2+4x-2= -2(x-1)2, 它有一个零点-1Ï(-1, 1)
当a= -2时, 此时f(x)= -4x2+4x-1= -4(x-
)2, 它有一个零点
∈( -1, 1),
故 a= -2满足题设
(2)当f(-1)f(1)= (a-7)( a+1)<0即 -1<a<7时, f(x)有唯一一个零点在(-1, 1)内
(3)当f(x)在(-1, 1)上有两个零点时, 则
或![]()
解得a>7或a<-2
综上所述, a的取值范围是a≤-2或-1<a<7或a>7
科目:高中数学 来源: 题型:
(本小题满分14分)如果对于函数
的定义域内任意的
,都有
成立,那么就称函数
是定义域上的“平缓函数”.
(1)判断函数
,
是否是“平缓函数”;(2)若函数
是闭区间
上的“平缓函数”,且
.证明:对于任意的![]()
,都有
成立.(3)设
、
为实常数,
.若
是区间
上的“平缓函数”,试估计
的取值范围(用
表示,不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
如果对于函数
的定义域内任意的
,都有
成立,那么就称函数
是定义域上的“平缓函数”.(1)判断函数
,
是否是“平缓函数”;(2)若函数
是闭区间
上的“平缓函数”,且
.证明:对于任意的![]()
,都有
成立.(3)设
、
为实常数,
.若
是区间
上的“平缓函数”,试估计
的取值范围(用
表示,不必证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com