精英家教网 > 高中数学 > 题目详情
平面向量
a
=(
3
,1),
b
=(
1
2
3
2
)
,若存在不同时为0的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
x
y
,试求函数关系式k=f(t)
分析:利用向量模的坐标公式求出
a
b
的模,利用向量垂直的充要条件:向量的数量积为0列出等式求出k.
解答:解∵
a
=(
3
,-1)
b
=(
1
2
3
2
)

∴.|
a
|=2,|
b
|=1且
a
b

x
y

x
y
=0

即-k|a|2+t(t2-3)|b|2=0,
∴t3-3t-4k=0,
k=
1
4
t3-
3
4
t
点评:本题考查向量模的坐标公式及向量垂直的充要条件:向量的数量积为0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)
,若存在不同时为o的实数k和x,使
m
=
a
+(x2-3)
b
n
=-k
a
+x
b
m
n

(Ⅰ)试求函数关系式k=f(x).
(Ⅱ)对(Ⅰ)中的f(x),设h(x)=4f(x)-ax2在[1,+∞)上是单调函数.
①求实数a的取值范围;
②当a=-1时,如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求证:h(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(3,1),
b
=(x,-3),
a
b
,则x
等于(  )
A、9B、1C、-1D、-9

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
)
,若存在不同时为0的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
,且
x
y
,试确定函数k=f(t)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)证明:
a
b

(2)若存在不同时为零的实数k和g,使
x
=
a
+(g2-3)
b
y
=-k
a
+g
b
,且
x
y
,试求函数关系式k=f(g);
(3)椐(2)的结论,讨论关于g的方程f(g)-k=0的解的情况.

查看答案和解析>>

同步练习册答案