精英家教网 > 高中数学 > 题目详情
9.已知F为抛物线y2=4x的焦点,点A,B在该抛物线上,$\overrightarrow{OA}$$•\overrightarrow{OB}$=0(其中O为坐标原点),则△ABO与△BFO面积之差的最小值是(  )
A.4B.8C.8$\sqrt{3}$D.16$\sqrt{3}$

分析 设出A,B的坐标,讨论直线斜率存在时,联立直线方程与抛物线方程,利用消元法得到关于x的一元二次方程,由$\overrightarrow{OA}$$•\overrightarrow{OB}$=0,得x1x2+y1y2=0,建立关于参数k,b的关系,消去b可得直线恒过(4,0),再考虑斜率不存在,结论成立,即可得出结论.

解答 解:设点A,B的坐标分别为(x1,y1),(x2,y2),设A在上方,

(1)当直线l存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.
联立方程,消去y得k2x2+(2kb-4)x+b2=0①,则x1x2=$\frac{{b}^{2}}{{k}^{2}}$,
由y12=4x1,y22=4x2,则y1y2=4•$\frac{b}{k}$,
又$\overrightarrow{OA}$$•\overrightarrow{OB}$=0,则x1x2+y1y2=0,
即$\frac{{b}^{2}}{{k}^{2}}$+4•$\frac{b}{k}$=0,
解得b=0(舍去)或b=-4k②,
故直线l的方程为:y=kx-4k=k(x-4),故直线过定点(4,0),
(2)当直线l斜率不存在时,设它的方程为x=m,显然m>0,
联立方程解得y=±2$\sqrt{m}$,即y1y2=-4m
又因为$\overrightarrow{OA}$$•\overrightarrow{OB}$=0,所以可得x1x2+y1y2=0,即m2-4m=0,
解得m=0(舍去)或m=4
可知直线l方程为:x=4,
故直线过定点(4,0).
设AB的方程为x=my+4,代入y2=4x,可得y2-4my-16=0,
∴y1y2=-16;
S△ABO=$\frac{1}{2}$×4×(y1-y2),
S△BOF=$\frac{1}{2}$×(-y2),
∴S△ABO-S△BOF=2y1-$\frac{3}{2}$y2=2y1+$\frac{24}{{y}_{1}}$≥2$\sqrt{2{y}_{1}×\frac{24}{{y}_{1}}}$=8$\sqrt{3}$.
故选:C.

点评 本题考查向量垂直的条件,同时考查直线与抛物线的位置关系,以及证明直线恒过定点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=|2x-1|,实数a<b,且f(a)=f(b),则a+b的取值范围是(  )
A.(0,1)B.(-∞,0)C.(0,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x∈(-∞,2)}\\{\frac{1}{2}f(x-2),x∈[2,+∞)}\end{array}\right.$,则函数F(x)=x•[f(x)+$\frac{3}{10}$]-$\frac{13}{10}$的零点个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图所示,正三棱锥S-ABC中,D,E,F分别是棱SA,SB,SC上的点,且SD=a,平面DEF∥底面ABC,且三棱台DEF-ABC与三棱锥S-ABC的所有棱长之和相等,则三棱锥S-DEF的外接球的表面积为$\frac{3π}{2}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2-2x+4y=0,若直线l:y=k(x-3).
(1)若直线l过圆C的圆心,求直线l在y轴上的截距;
(2)若圆C被直线l截得的弦长大于4,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知M为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一动点,过M作椭圆的切线为l,过椭圆的右焦点F1作l的垂线,垂足为D,求D点的轨迹方程为x2+y2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点为F1,F2,若C上存在点P,使得|PF1|=k|PF2|(k>1),则双曲线C的离心率e的取值范围是(  )
A.(k,$\frac{k+1}{k-1}$]B.(1,$\frac{k+1}{k-1}$]C.(1,k]D.[k,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点A(m,-4),B(-2,8),C(2,0),且向量$\overrightarrow{AB}$与向量$\overrightarrow{BC}$平行,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{{x}^{2}-3ax+2{a}^{2},x≥1}\end{array}\right.$恰有2个零点,则实数a的取值范围是[$\frac{1}{2}$,1)∪[3,+∞).

查看答案和解析>>

同步练习册答案