精英家教网 > 高中数学 > 题目详情
如图,已知椭圆(a> b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A、B。
(1)①若圆O过椭圆的两个焦点,求椭圆的离心率e;
②若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e 的取值范围;
(2)设直线AB与x轴、y轴分别交于点M、N,求证:为定值。
解:(1)①∵圆O过椭圆的焦点,圆O:x2+y2=b2
∴b=c,
∴b2=a2-c2=c2
∴a2=2c2

②由∠APB=90°及圆的性质,知四边形OBPA为正方形,可得

∴|OP|2=2b2≤a2
∴a2≤2c2

(2)设P(x0,y0),A(x1,y1),B(x2,y2),
则切线PA方程为:x1x+y1y=b2,PB方程为:x2x+y2y=b2
∴x1x+y1y=x2x+y2y,

直线AB方程为:
即x0x+y0y=b2
令x=0,得
令y=0得

为定值,定值是
练习册系列答案
相关习题

科目:高中数学 来源:2014届广东省、阳东一中高二上联考文数试卷(解析版) 题型:解答题

(本题满分14分)

如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;

(2)若=2·,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013届度吉林省吉林市高二上学期期末理科数学试卷 题型:解答题

如图,已知椭圆(a>b>0)的离心率,过顶点A、B的直线与原点的距离为

 

 

(1)求椭圆的方程.

(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省淮安市高二上学期期末模拟考试(四)数学 题型:解答题

如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为

 

 

(1)求椭圆的方程.

(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.

问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013届山东省潍坊市高二寒假作业(三)数学试卷 题型:解答题

如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为

 

 

(1)求椭圆的方程.

(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010年河北省邯郸市高二上学期期末考试数学理卷 题型:解答题

(示范高中)如图,已知椭圆(a>b>0)的离心率,过点的直线与原点的距离为

(1)求椭圆的方程;

(2)已知定点,若直线与椭圆交于两点.问:是否存在的值,使以为直径的圆过点?请说明理由.

 

 

查看答案和解析>>

同步练习册答案