精英家教网 > 高中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=数学公式,BC=26.
求:(1)cos∠DAC的值;
(2)线段AD的长.

解:(1)由cosB=和BC=26,可求得,AB=10------(2分)
可证得:∠ACB=∠ACD=∠DAC,由勾股定理可求得AC=24,
∴cos∠DAC=cos∠ACB==.------(3分)
(2)取AC中点E,连接DE,AE=12,cos∠DAC=
由等腰△ADC三线合一得DE⊥AC,
∴Rt△AED中AD==13------(3分)
分析:(1)在RT△BAC中求出AB,AC,利用∠ACB=∠ACD=∠DAC,求出cos∠DAC.
(2)取AC中点E,连接DE,在Rt△AED中AD=求解即可.
点评:本题考查平面多边形中的线段长度求解,解直角三角形的知识,考查转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,则EF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,对角线AC和BD交于点O,E、F分别是AC和BD的中点,分别写出
(1)图中与
EF
CO
共线的向量;
(2)与
EA
相等的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(II)若M为线段EF的中点,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),求cosθ.

查看答案和解析>>

同步练习册答案