精英家教网 > 高中数学 > 题目详情

如图,平面中两条直线l 1 l 2相交于点O,对于平面上任意一点M,若x , y分别是M到直线l1l2的距离,则称有序非负实数对(x , y)是点M的“ 距离坐标” 。

已知常数p≥0, q≥0,给出下列三个命题:

①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;

②若pq="0," 且p+q≠0,则“距离坐标”为( p, q) 的点有且只有2个;

③若pq≠0则“距离坐标”为( p, q) 的点有且只有4个.

上述命题中,正确命题的是           .   (写出所有正确命题的序号)

 

【答案】

①③

【解析】

试题分析:如图,根据题意可知,若p=q=0,则“距离坐标”为(0,0)的点只有一个,所以①正确;若pq="0," 且p+q≠0,则“距离坐标”为( p, q) 的点有4个,所以②不正确;同理③正确.

考点:本小题主要考查角平分线的性质.

点评:此题主要考查了角平分线的性质,有分类讨论的思想方法,又有创新意识,解题时需要注意.这是一个好题,注意变形去掉p≥0,q≥0又该怎样解是解决问题的关键.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是
4

查看答案和解析>>

科目:高中数学 来源: 题型:

10、如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
上述命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若p=0,q=1,则“距离坐标”为(0,1)的点有且仅有2个;
③若p=1,q=2,则“距离坐标”为(1,2)的点有且仅有4个.
上述命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面中两条直线l1和l 2相交于点O,对于平面上任意一点M,若x,y分别是M到直线l 1和l 2的距离,则称有序非负实数对(x,y)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;
②若pq=0,且p+q≠0,则“距离坐标”为( p,q) 的点有且只有2个;
③若pq≠0则“距离坐标”为 ( p,q) 的点有且只有3个.
上述命题中,正确的有
①②
①②
.(填上所有正确结论对应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若x,y分别是M到直线l1和l2的距离,则称有序非负实数对(x,y)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且只有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q) 的点有且只有2个;
③若pq≠0则“距离坐标”为 (p,q) 的点有且只有4个.
上述命题中,正确命题的是
①②③
①②③
.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案