【题目】在日常生活中,石子是我们经常见到的材料,比如在各种建筑工地或者建材市场上常常能看到堆积如山的石子,它的主要成分是碳酸钙.某雕刻师计划在底面边长为2m、高为4m的正四棱柱形的石料
中,雕出一个四棱锥
和球M的组合体,其中O为正四棱柱的中心,当球的半径r取最大值时,该雕刻师需去除的石料约重___________kg.(最后结果保留整数,其中
,石料的密度
,质量
)
![]()
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)在(1)中,设曲线
经过伸缩变换
得到曲线
,设曲线
上任意一点为
,当点
到直线
的距离取最大值时,求此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
:
(
)的离心率为
,并以抛物线
:
的焦点
为上焦点.直线
:
(
)交抛物线
于
,
两点,分别以
,
为切点作抛物线
的切线,两切线相交于点
,又点
恰好在椭圆
上.
![]()
(1)求椭圆
的方程;
(2)求
的最大值;
(3)求证:点
恒在
的外接圆内.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有一分鹿问题:“今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务,则大夫、不更恰好在同一组的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.
![]()
根据该折线统计图,下面说法错误的是
A. 这10年中有3年的GDP增速在9.00%以上
B. 从2010年开始GDP的增速逐年下滑
C. 这10年GDP仍保持6.5%以上的中高速增长
D. 2013年—2018年GDP的增速相对于2009年—2012年,波动性较小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即
尺),芦苇生长在水的中央,长出水面的部分为1尺.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设
,现有下述四个结论:
①水深为12尺;②芦苇长为15尺;③
;④
.
其中所有正确结论的编号是( )
![]()
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点
的直线l:
与抛物线E:
(
)交于B,C两点,且A为线段
的中点.
(1)求抛物线E的方程;
(2)已知直线
:
与直线l平行,过直线
上任意一点P作抛物线E的两条切线,切点分别为M,N,是否存在这样的实数m,使得直线
恒过定点A?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com