精英家教网 > 高中数学 > 题目详情
已知函数f1(x)=3|x-p1|f2(x)=2•3|x-p2|(p1,p2为实数),函数f(x)定义为:对于每个给定的x,f(x)=
f1(x) ,f1(x)≤f2(x)
f2(x) ,f1(x)>f2(x)

(1)讨论函数f1(x)的奇偶性;
(2)解不等式:f2(x)≥6;
(3)若f(x)=f1(x)对任意实数x都成立,求p1,p2满足的条件.
分析:(1)通过p1=0与p1≠0,直接判断函数的奇偶性即可.
(2)直接利用指数函数的性质,转化指数不等式为绝对值不等式,求解即可.
(3)根据定义,问题等价于“f1(x)≤f2(x)恒成立”,从而进一步转化为具体不等式恒成立问题,可求p1,p2满足的条件.
解答:解:(1)当p1=0时,函数f1(x)=3|x|
显然函数是偶函数,当p1≠0时,函数的对称轴为 x=p,
所以此时函数f1(x)=3|x-p1|既不是奇函数也不是偶函数.
(2)因为f2(x)=2•3|x-p2|,f2(x)≥6,
所以2•3|x-p2|≥6,即3|x-p2|≥3
所以|x-p2|≥1,解得-1+p2≥x或x≥1+p2
所以不等式的解集为{x|-1+p2≥x或x≥1+p2}.
(3)由f(x)的定义可知,f(x)=f1(x)(对所有实数x)
等价于f1(x)≤f2(x)(对所有实数x)
这又等价于3|x-p1|≤2•3|x-p2|,
即3|x-p1|-|x-p2|≤3log32=2对所有实数x均成立.(*)
由于|x-p1|-|x-p2|≤|(x-p1)-(x-p2)|=|p1-p2|(x∈R)的最大值为|p1-p2|,
故(*)等价于3|p1-p2|≤2,即|p1-p2|≤log32,这就是所求的条件.
综上:|p1-p2|≤log32
点评:本题考查其他不等式的解法,函数的最值及其几何意义,函数奇偶性的判断,考查分析问题解决问题的能力,考查转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称为g(x)为f1(x),f2(x)的“活动函数”.
已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx
f2(x)=
1
2
x2+2ax

①若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围;
②当a=
2
3
时,求证:在区间(1,+∞)上,函数f1(x),f2(x)的“活动函数”有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx,f2(x)=
1
2
x2
+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)已知函数f1(x)=axf2(x)=xaf3(x)=logax(其中a>0且a≠1),当x≥0且y≥0时,在同一坐标系中画出其中两个函数的大致图象,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知函数f1(x)=e|x-a|f2(x)=ebx
(I)若f(x)=f1(x)+f2(x)-bf2(-x),是否存在a,b∈R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数g(x)=f1(x)+f2(x)在R上的单调区间;
(III )对于给定的实数?x0∈[0,1],对?x∈[0,1],有|f1(x)-f2(x0)|<1成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=x+
4
x
(x≠0),f2(x)=cosx+
4
cosx
(0<x<
π
2
)
,f3(x)=
8x
x2+1
(x>0),f4(x)=
9
x+2
+x(x≥-2)
,其中以4为最小值的函数个数是(  )

查看答案和解析>>

同步练习册答案