精英家教网 > 高中数学 > 题目详情
11.若曲线f(x)=ax3+bx2+cx在x=0处的切线是y=x,且函数y=f(x)在x=1处取得极小值0,则曲线f(x)的极大值为$\frac{4}{27}$.

分析 求函数的导数,利用在x=0处的切线是y=x,当x=1时,有极小值0,建立方程,求出a,b,c的值,即可得出结论.

解答 解:∵f(x)=ax3+bx2+cx,
∴f′(x)=3ax2+2bx+c,
∵x=0处的切线是y=x,
∴f′(0)=1,
∴c=1,
∵函数y=f(x)在x=1处取得极小值0,
∴f(1)=0,f′(1)=0,
∴$\left\{\begin{array}{l}{a+b+1=0}\\{3a+2b+1=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=1}\\{b=-2}\end{array}\right.$,
∴f(x)=x3-2x2+x,
f′(x)=3x2-4x+1=(x-1)(3x-1),
令f′(x)=0,解的x=1,或x=$\frac{1}{3}$,
由f′(x)>0得$\frac{1}{3}$<x<1此时函数递减,
由f′(x)<0得x>1或x<$\frac{1}{3}$,此时函数递增,
∴当x=$\frac{1}{3}$时,函数有极大值,极大值为f($\frac{1}{3}$)=$\frac{1}{27}$-2×$\frac{1}{9}$+$\frac{1}{3}$=$\frac{4}{27}$.
故答案为:$\frac{4}{27}$.

点评 本题考查导数知识的应用,考查函数的极值,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)设$α,β∈[{-\frac{π}{2},0}],f({3α+π})=\frac{10}{13}$,$f({3β+\frac{5π}{2}})=\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.试推导焦点在y轴上的椭圆的标准方程:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知log2x+log2y=0,且x4+y4=194,求$lo{g}_{{2}_{\;}}$(x+y)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(a,b)=$\sqrt{{3}^{2}+(5-a)^{2}}$+$\sqrt{(5-2b)^{2}+(5-b)^{2}}$+$\sqrt{4(b-1)^{2}+(b-a)^{2}}$,其中a,b∈R,则f(a,b)的最小值是4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.利用单位圆中的三角函数线证明:当α1,α2∈[0,$\frac{π}{2}$],且α1<α2时,有sinα1<sinα2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=x2-mx+2满足f($\frac{3}{2}$+x)=f($\frac{3}{2}$-x).
命题p:上列二次函数f(x)当x∈[0,a]时,最大值是2.
命题q:关于x的不等式x2+(a-1)x+a2<0的解集是∅.
若命题“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=axlnx+$\frac{b}{e}$(其中e为自然相对数的底数,e=2.71828…),曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1+$\frac{3}{e}$.
(1)求a,b:
(2)证明:$\frac{{e}^{x}}{x}$f(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若椭圆的焦点在y轴上,长轴长为4,离心率e=$\frac{\sqrt{3}}{2}$,则其标准方程为${x}^{2}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

同步练习册答案