精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
4
x

(1)求函数f(x)定义域;
(2)判断并证明函数f(x)=x+
4
x
的奇偶性
(3)证明函数f(x)=x+
4
x
在x∈[2,+∞)上是增函数.
考点:函数单调性的判断与证明,函数的定义域及其求法,函数奇偶性的判断
专题:函数的性质及应用
分析:本题(1)直接根据分式有意义时分母不为0,求出x的取值范围,得到本小题结论;(2)利用函数奇偶性定义,可证明本小题结论;(3)利用函数单调性定义证明本小题结论.
解答: 解:(1)∵函数f(x)=x+
4
x

∴分母x≠0,
∴函数f(x)定义域为{x|x≠0,x∈R}.
(2)任取x∈R,
则有f(-x)=-x+
4
-x
=-(x+
4
x
)=-f(x),
∴函数f(x)=x+
4
x
是奇函数.
(3)在[2,+∞)上任取x1,x2,且x1<x2
则f(x2)-f(x1)=(x2+
4
x2
)-(x1+
4
x1
)=(x2-x1)+(
4
x2
-
4
x1
)=(x2-x1(1-
4
x1x2
)
=
(x2-x1)(x1x2-4)
x1x2

∵2≤x1<x2
∴x2-x1>0,x1x2-4>0,
∴f(x2)-f(x1)>0,
∴f(x2>f(x1).
∴函数f(x)=x+
4
x
在x∈[2,+∞)上是增函数.
点评:本题考查了函数的定义域、函数的奇偶性、函数的单调性,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,已知前15项之和S15=60,那么a8=(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

把89转化为五进制数是(  )
A、324(5)
B、253(5)
C、342(5)
D、423(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:10lga-10•ln1+πlogπb的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=log0.5(-2x2+ax+3),若函数f(x)为偶函数,且x∈(m,n)的值域为(1,+∞),求a,m,n.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题,其中正确的有(  )个
①在区间(1,+∞)上,函数y=x-1,y=x 
1
2
,y=(x-1)2,y=x3中有三个增函数;
②命题p:?x∈R,sinx<1,则x¬p:?x0∈R,使sinx0>1;
③若函数f(x)是偶函数,则f(x-1)的图象关于直线x=1对称;
④若角α,β满足-
π
2
<α<β<
π
2
,则2α-β的取值范围是(-
3
2
π,
3
2
π)
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

当k为什么实数时,方程组
3x-6y=1
5x-ky=2
的解满足x<0且y<0的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b的图象关于直线x=1对称,且方程f(x)+2x=0有两个相等的实根.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)在区间[-5,5]上是增函数,那么下列不等式中成立的是(  )
A、f(4)>f(-π)>f(3)
B、f(π)>f(4)>f(3)
C、f(4)>f(3)>f(π)
D、f(-3)>f(-π)>f(-4)

查看答案和解析>>

同步练习册答案