精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知数学公式,a=2,数学公式,求△ABC的面积.

解:(Ⅰ)=sin2xcos+cos2xsin+cos2x
=sin2x+cos2x=sin2x+cos2x)=sin(2x+).
令 2kπ-≤2x+≤2kπ+,k∈z,求得 kπ-≤x≤kπ+
函数f(x)的单调递增区间为[kπ-,kπ+],k∈z.
(Ⅱ)由已知,可得 sin(2A+)=
因为A为△ABC内角,由题意知0<A<π,所以 <2A+
因此,2A+=,解得A=
由正弦定理 ,得b=,…(10分)
由A=,由B=,可得 sinC=,…(12分)
∴S=ab•sinC==
分析:(Ⅰ)利用两角和差的正弦公化简函数的解析式为sin(2x+),令 2kπ-≤2x+≤2kπ+,k∈z,求得x的范围,即可求得f(x)的单调递增区间.
(Ⅱ)由已知,可得 sin(2A+)=,求得A=,再利用正弦定理求得b的值,由三角形内角和公式求得C的值,再由 S=ab•sinC,运算求得结果.
点评:本题主要考查两角和差的正弦公式的应用,正弦函数的单调性,正弦定理以及根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数)在上函数值总小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高一(下)3月月考数学试卷(解析版) 题型:解答题

已知函数,编写一个程序求函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=试画出求函数值的程序框图.

查看答案和解析>>

同步练习册答案