精英家教网 > 高中数学 > 题目详情
(2011•西安模拟)在正项等差数列{an}中,对任意的n∈N*都有a1+a2+…+an=
12
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=2an,其前n项和为Sn,求证;对任意的n∈N*,Sn-bn+1均为定植.
分析:(Ⅰ)在正项等差数列{an}中,对任意的n∈N*都有a1+a2+…+an=
1
2
anan+1
,令n=1,得a2=2.令n=2,得d=1.由此能求出数列{an}的通项公式.
(Ⅱ)由an=n,bn=2an=2n,知Sn=2+22+…+2n=2n+1-2.故Sn-bn+1=(2n+1-2)-2n+1=-2,由此能够证明对任意的n∈N*,Sn-bn+1均为定值-2.
解答:(Ⅰ)解:在正项等差数列{an}中,
对任意的n∈N*都有a1+a2+…+an=
1
2
anan+1

令n=1,得a1=
1
2
a1a2

∵a1>0,
∴a2=2.
令n=2,得a1+a2=
1
2
a2a3

即a1+2=a3=a1+2d,
故d=1.
∴an=2+(n-2)×1=n.
(Ⅱ)证明:∵an=n,bn=2an=2n
∴Sn=2+22+…+2n
=
2(1-2n)
1-2

=2n+1-2.
故Sn-bn+1=(2n+1-2)-2n+1=-2,
∴对任意的n∈N*,Sn-bn+1均为定值-2.
点评:本题考查数列的通项公式的求法和证明对任意的n∈N*,Sn-bn+1均为定值.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•西安模拟)如图,点P是球O的直径AB上的动点,PA=x,过点P且与AB垂直的截面面积记为y,则y=f(x)的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西安模拟)设不等式组
|x|-2≤0
y-3≤0
3x-2y≤2
所表示的平面区域为S,若A、B为S内的任意两个点,则|AB|的最大值为
65
65

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西安模拟)若集合M={x|x2<2x},N={x|y=
x-1
}
,则M∩(?RN)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西安模拟)若复数z1=4+3i,z2=cosθ+isinθ,且z1•z2∈R,则tanθ=
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西安模拟)已知函数f(x)=
1
4x+2
对于满足a+b=1的实数a,b都有f(a)+f(b)=
1
2
.根据以上信息以及等差数列前n项和公式的推导方法计算:f(
1
2011
)+f(
2
2011
)+f(
3
2011
)+…+f(
2011
2011
)
=
1508
3
1508
3

查看答案和解析>>

同步练习册答案