精英家教网 > 高中数学 > 题目详情
已知△ABC△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2
∵△ABC△DEF,且相似比为3:4
∴S△ABC:S△DEF=9:16
∴S△DEF=
32
9

故答案为:
32
9
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、如图边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是(  )
①动点A′在平面ABC上的射影在线段AF 上;
②BC∥平面A′DE;
③三棱锥A′-FED的体积有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为1,点D在AC上,DE∥AB,连接BD,设△DCE、△ABD、△BDE中面积最大者的值为y,则y的最小值为
3-
5
2
3-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B、C的坐标;
(2)若圆M经过不同的三点A、B、P(m,0),且斜率为1的直线与圆M相切于点P,求圆M的方程;
(3)问圆M是否存在斜率为1的直线l,使l被圆M截得的弦为DE,以DE为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE.若CD=
3
,∠ACB=30°
,分别求AB,OE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A∉平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列命题:
①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱锥A′-DEF的体积最大值为
164
a3
④动点A′在平面ABC上的射影在线段AF上;
⑤直线DF与直线A′E可能共面.
其中正确的命题是
 
(写出所有正确命题的编号)

查看答案和解析>>

同步练习册答案