精英家教网 > 高中数学 > 题目详情
设P为双曲线x2-=1上的一点,F1,F2是该双曲线的左、右焦点,若△PF1F2的面积为12,则∠F1PF2等于   
【答案】分析:由双曲线方程算出焦距|F1F2|=2,根据双曲线定义得到||PF1|-|PF2||=2.然后在△PF1F2中运用余弦定理,得出关于|PF1|、|PF2|和cos∠F1PF2的式子;而△PF1F2的面积为12,得到|PF1|、|PF2|和sin∠F1PF2的另一个式子.两式联解即可得到∠F1PF2的大小.
解答:解:∵双曲线方程为x2-=1,
∴c2=a2+b2=13,可得双曲线的左焦点F1(-,0),右焦点F2,0)
根据双曲线的定义,得||PF1|-|PF2||=2a=2
∴由余弦定理,得|F1F2|2=(|PF1|-|PF2|)2+(2-2cos∠F1PF2)|PF1|•|PF2|
即:52=4+(2-2cos∠F1PF2)|PF1|•|PF2|,可得|PF1|•|PF2|=
又∵△PF1F2的面积为12,
|PF1|•|PF2|sin∠F1PF2=12,即=12
结合sin2∠F1PF2+cos2∠F1PF2=1,
解之得sin∠F1PF2=1且cos∠F1PF2=0,
∴∠F1PF2等于
故答案为:
点评:本题给出双曲线上一点P与双曲线两个焦点F1、F2构成的三角形面积为12,求∠F1PF2的大小,着重考查了双曲线的标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P为双曲线x2-
y2
12
=1
上的一点,F1,F2是该双曲线的两个焦点,若|PF1|:|PF2|=3:2,则△PF1F2的面积为(  )
A、6
3
B、12
C、12
3
D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为双曲线x2-
y2
12
=1上的一点,F1,F2是该双曲线的左、右焦点,若△PF1F2的面积为12,则∠F1PF2等于
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为双曲线x2-
y2
12
=1
上的一点,F1,F2是该双曲线的两个焦点,若|PF1|=
3
2
|PF2|
,则cos∠F1PF2
-
13
4
-
13
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为双曲线x2-
y212
=1上的一点,F1,F2是该双曲线的两个焦点,若PF1:PF2=3:2,则△PF1F2的面积为
12
12

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二数学理科竞赛试卷(解析版) 题型:填空题

设P为双曲线x2-=1上的一点,F1、F2是双曲线的焦点

若|PF1|:|PF2|=3:2,则△PF1F2的面积为 ___________.

         

 

查看答案和解析>>

同步练习册答案