精英家教网 > 高中数学 > 题目详情

为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:
A班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.
B班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.
(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?;
(2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(3)根据数据推断A班全班40名学生中有几名学生的视力大于4.6?

(1)A班学生的视力较好;(2)B班5名学生视力的方差较大;(3)A班有16名学生视力大于4.6.

解析试题分析:本题考查平均数、方差、随机事件的概率等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,用所有视力的和除以5得到平均数,再比较大小,哪个班的平均数大哪个班的视力好;第二问,方差越小越稳定,利用计算两个班的视力的方差比较大小;第三问,先得出5名学生视力大于4.6的频率,再估计全班40名学生的视力大于4.6的人数.
试题解析:(1)A班5名学生的视力平均数为
B班5名学生的视力平均数为.
从数据结果来看A班学生的视力较好
(2)B班5名学生视力的方差较大
(3)在A班抽取的5名学生中,视力大于4.6的有2名,
所以这5名学生视力大于4.6的频率为
所以全班40名学生中视力大于4.6的大约有名,
则根据数据可推断A班有16名学生视力大于4.6.
考点:平均数、方差、随机事件的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立.
(1)求红队至少一名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设有关于x的一元二次方程x2+2ax+b2="0." (l)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,t+1]任取的一个数,b是从区间[0,t]任取的一个数,其中t满足2≤t≤3,求方程有实根的概率,并求出其概率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设为取得红球的个数.
(1)求的分布列;
(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50
 
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5
次,求:
(1)其中只在第一、三、五次击中目标的概率;
(2)其中恰有3次击中目标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
 
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•陕西)如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:

所用时间(分钟)
10~20
20~30
30~40
40~50
50~60
选择L1的人数
6
12
18
12
12
选择L2的人数
0
4
16
16
4

(Ⅰ)试估计40分钟内不能         赶到火车站的概率;
(Ⅱ)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;
(Ⅲ)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的 路径.

查看答案和解析>>

同步练习册答案