¶¨ÒåÊýÁÐ{xn}£¬Èç¹û´æÔÚ³£Êýp£¬Ê¹¶ÔÈÎÒâÕýÕûÊýn£¬×ÜÓУ¨xn+1-p£©£¨xn-p£©£¼0³ÉÁ¢£¬ÄÇôÎÒÃdzÆÊýÁÐ{xn}Ϊ¡°p-°Ú¶¯ÊýÁС±£®
£¨1£©Éèan=2n-1£¬£¬n¡ÊN*£¬ÅжÏ{an}¡¢{bn}ÊÇ·ñΪ¡°p-°Ú¶¯ÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÒÑÖª¡°p-°Ú¶¯ÊýÁС±{cn}Âú×ãcn+1=£¬c1=1£¬Çó³£ÊýpµÄÖµ£»
£¨3£©Éèdn=£¨-1£©n•£¨2n-1£©£¬ÇÒÊýÁÐ{dn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºÊýÁÐ{Sn}ÊÇ¡°p-°Ú¶¯ÊýÁС±£¬²¢Çó³ö³£ÊýpµÄȡֵ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾ÝÌâÄ¿¸ø³öµÄ°Ú¶¯ÊýÁе͍Ò壬¶ÔÊýÁÐ{an}¼ÓÒÔÑéÖ¤£¬¿´ÊÇ·ñ´æÔÚ³£Êýp£¬Ê¹µÃ2n-1£¼p£¼2n+1¶ÔÈÎÒân³ÉÁ¢£¬Ö»ÒªnÈ¥²»Í¬µÄÖµ1£¬2£¬¼´¿É·¢ÏÖp²»´æÔÚ£¬¶ø¶ÔÓÚÊýÁÐ{bn}£¬Âú×ã¶ÔÈÎÒân³ÉÁ¢£¬ËùÒÔ£¬p¿ÉȡֵΪ0£»
£¨2£©ÓÉÊýÁÐ{cn}ÊÇ¡°p-°Ú¶¯ÊýÁС±£¬ÇÒÂú×ãcn+1=£¬c1=1£¬Çó³öc2ºó¿É¶Ï¶¨³£ÊýpµÄ³õ²½·¶Î§£¬ÔÙÓÉ£¨xn+1-p£©£¨xn-p£©£¼0¶ÔÈÎÒâÕýÕûÊýn³ÉÁ¢£¬µÃ³öÊýÁÐµÄÆæÊýÏСÓÚp£¬Å¼ÊýÏî¶¼´óÓÚp£¬»òÆæÊýÏî¶¼´óÓÚp£¬Å¼ÊýÏСÓÚp£¬È»ºóÀûÓá°Á½±ß¼Ð¡±µÄ°ì·¨¿ÉÇópµÄÖµ£»
£¨3£©ÓÉdn=£¨-1£©n•£¨2n-1£©£¬Çó³öÊýÁÐ{dn}µÄǰnÏîºÍ£¬ÓÉǰnÏîºÍ¿´³öp=0ʱ¼´¿ÉʹÊýÁÐ{Sn}Âú×ã¡°p-°Ú¶¯ÊýÁС±µÄ¶¨Ò壬Ȼºó¸ù¾ÝÊýÁÐ{Sn}ÔÚnÎªÆæÊýºÍnΪżÊýʱµÄµ¥µ÷ÐÔ¼´¿ÉÇó³öpµÄ·¶Î§£®
½â´ð£º½â£º£¨1£©¼ÙÉèÊýÁÐ{an}ÊÇ¡°p-°Ú¶¯ÊýÁС±£¬
¼´´æÔÚ³£Êýp£¬×ÜÓÐ2n-1£¼p£¼2n+1¶ÔÈÎÒân³ÉÁ¢£¬
²»·ÁÈ¡n=1ʱ£¬Ôò1£¼p£¼3£¬È¡n=2ʱ£¬Ôò3£¼p£¼5£¬ÏÔÈ»³£Êýp²»´æÔÚ£¬
ËùÒÔÊýÁÐ{an}²»ÊÇ¡°p-°Ú¶¯ÊýÁС±£»
ÓÉ£¬ÓÚÊǶÔÈÎÒân³ÉÁ¢£¬ÆäÖÐp=0£®
ËùÒÔÊýÁÐ{bn}ÊÇ¡°p-°Ú¶¯ÊýÁС±£®
£¨2£©ÓÉÊýÁÐ{cn}Ϊ¡°p-°Ú¶¯ÊýÁС±£¬ÓÖc1=1£¬ËùÒÔ£¬
¼´´æÔÚ³£Êý£¬Ê¹¶ÔÈÎÒâÕýÕûÊýn£¬×ÜÓУ¨cn+1-p£©£¨cn-p£©£¼0³ÉÁ¢£»
¼´ÓУ¨cn+2-p£©£¨cn+1-p£©0£¬
ËùÒÔc1£¾p⇒c3£¾p⇒¡­⇒c2n-1£¾p£®
ͬÀíc2£¼p⇒c4£¼p⇒¡­⇒c2n£¼p£®
ËùÒÔc2n£¼p£¼c2n-1£¬½âµÃ£¬
¼´£®
ͬÀí£¬½âµÃ£¬¼´£®
×ÛÉÏ£®
£¨3£©Ö¤Ã÷£ºÓÉ
£®
µ±nΪżÊýʱ£¬
µ±nÎªÆæÊýʱ£¬
ËùÒÔ£¬£¬
ÏÔÈ»´æÔÚp=0£¬Ê¹¶ÔÈÎÒâÕýÕûÊýn£¬×ÜÓгÉÁ¢£¬
ËùÒÔÊýÁÐ{Sn}ÊÇ¡°p-°Ú¶¯ÊýÁС±£»
µ±nÎªÆæÊýʱSn=-nµÝ¼õ£¬ËùÒÔSn¡ÜS1=-1£¬Ö»Òªp£¾-1¼´¿É
µ±nΪżÊýʱSnµÝÔö£¬Sn¡ÝS2£¬Ö»Òªp£¼2¼´¿É
×ÛÉÏ-1£¼p£¼2£¬pµÄȡֵ·¶Î§ÊÇ£¨-1£¬2£©£®
Èçȡʱ£¬
=
=£®
ÒòΪ£¬-n£¨n+1£©¡Ü-2£¬
´æÔÚ£¬Ê¹£¼0³ÉÁ¢£®
ËùÒÔÊýÁÐ{Sn}ÊÇ¡°p-°Ú¶¯ÊýÁС±£®
µãÆÀ£º±¾ÌâÊÇж¨ÒåϵĵȲîÊýÁк͵ȱÈÊýÁÐ×ÛºÏÌ⣬¿¼²éÁËѧÉúµÄ·¢É¢Ë¼Î¬ÄÜÁ¦£¬½â´ð´ËÌâµÄ¹Ø¼üÊÇÔÚÀí½â¶¨ÒåµÄ»ù´¡ÉÏ£¬°ÑÎÊÌâת»¯ÎªÊìϤµÄ֪ʶÀ´½â¾ö£¬Óõ½ÁËÖ¤Ã÷²»µÈʽµÄ¡°Á½±ß¼Ð¡±µÄ·½·¨£¬´ËÌâÊÇÓÐÒ»¶¨ÄѶȵÄÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøº¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒf£¨-1+x£©=f£¨-1-x£©£¬µ±x¡Ê[-2£¬-1]ʱ£¬f£¨x£©=t£¨x+2£©3-t£¨x+2£©£¨t¡ÊR£©£¬¼Çº¯Êýy=f£¨x£©µÄͼÏóÔÚ£¨
1
2
£¬f£¨
1
2
£©£©´¦µÄÇÐÏßΪl£¬f¡ä£¨
1
2
£©=1£®
£¨¢ñ£©Çóy=f£¨x£©ÔÚ[0£¬1]ÉϵĽâÎöʽ£»
£¨¢ò£©µãÁÐB1£¨b1£¬2£©£¬B2£¨b2£¬3£©£¬¡­£¬Bn£¨bn£¬n+1£©ÔÚlÉÏ£¬A1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡­£¬An£¨xn£¬0£©ÒÀ´ÎΪxÖáÉϵĵ㣬Èçͼ£¬µ±n¡ÊN*ʱ£¬µãAn£¬Bn£¬An+1¹¹³ÉÒÔAnAn+1Ϊµ×±ßµÄµÈÑüÈý½ÇÐΣ®Èôx1=a£¨0£¼a£¼1£©£¬ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚʵÊýaʹµÃÊýÁÐ{xn}ÊǵȲîÊýÁУ¿Èç¹û´æÔÚ£¬Ð´³öaµÄÒ»¸öÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÃ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Èç[0.75]=0£¬[3.01]=3£®Èç¹û¶¨ÒåÊýÁÐ{xn}µÄͨÏʽΪxn=[
n4
](n¡ÊN*)
£¬Ôòx1+x2+¡­+x4n=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÈÎÒ⺯Êýf£¨x£©£¬x¡ÊD£¬¿É°´Èçͼ¹¹ÔìÒ»¸öÊýÁз¢ÉúÆ÷£¬¼ÇÓÉÊýÁз¢ÉúÆ÷²úÉúÊýÁÐ{xn}£®
£¨1£©Èô¶¨Ò庯Êýf(x)=
4x-2
x+1
£¬ÇÒÊäÈëx0=
49
65
£¬Çëд³öÊýÁÐ{xn}µÄËùÓÐÏ
£¨2£©Èô¶¨Ò庯Êýf£¨x£©=xsinx£¨0¡Üx¡Ü2¦Ð£©£¬ÇÒÒª²úÉúÒ»¸öÎÞÇîµÄ³£ÊýÁÐ{xn}£¬ÊÔÇóÊäÈëµÄ³õʼÊý¾Ýx0µÄÖµ¼°ÏàÓ¦ÊýÁÐ{xn}µÄͨÏʽxn£»
£¨3£©Èô¶¨Ò庯Êýf£¨x£©=2x+3£¬ÇÒÊäÈëx0=-1£¬ÇóÊýÁÐ{xn}µÄͨÏʽxn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

ÓÃ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Èç[0.75]=0£¬[3.01]=3£®Èç¹û¶¨ÒåÊýÁÐ{xn}µÄͨÏʽΪÊýѧ¹«Ê½£¬Ôòx1+x2+¡­+x4n=________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄê±±¾©Êг¯ÑôÇø¸ßÒ»£¨Ï£©ÆÚÄ©ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÓÃ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Èç[0.75]=0£¬[3.01]=3£®Èç¹û¶¨ÒåÊýÁÐ{xn}µÄͨÏʽΪ£¬Ôòx1+x2+¡­+x4n=    £®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸