精英家教网 > 高中数学 > 题目详情
(2008•和平区三模)在△ABC,设角A,B,C的对边分别为a,b,c,且
cosC
cosB
=
2a-c
b
,则角B=
π
3
π
3
分析:利用正弦定理将
2a-c
b
转化为
2sinA-sinC
sinB
,再利用两角和与差的正弦函数即可求得角B.
解答:解:∵在△ABC,
cosC
cosB
=
2a-c
b
,由正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R得:
2a-c
b
=
2sinA-sinC
sinB

cosC
cosB
=
2sinA-sinC
sinB

∴sinBcosC=2sinAcosB-sinCcosB,
∴sin(B+C)=2sinAcosB,又在△ABC,B+C=π-A,
∴sin(B+C)=sinA≠0,
∴cosB=
1
2
,又B∈(0,π),
∴B=
π
3

故答案为:
π
3
点评:本题考查正弦定理与两角和与差的正弦,考查转化思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•和平区三模)已知函数f(x)=(
1
3
)x-log2x
,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•和平区三模)如图,在△ABC中,∠ABC=∠ACB=30°,AB,AC边上的高分别为CD,BE,则以B,C为焦点且经过D、E两点的椭圆与双曲线的离心率的和为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•和平区三模)已知数列{an}的前n项和为Sn,且Sn=2an-2,(n=1,2,3…)数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记Sn=a1b1+a2b2+…+anbn,求满足Sn<167的最大正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•和平区三模)若圆C:x2+y2-ax+2y+1=0和圆x2+y2=1关于直线y=x-1对称,动圆P与圆C相外切且直线x=-1相切,则动圆圆心P的轨迹方程是(  )

查看答案和解析>>

同步练习册答案