精英家教网 > 高中数学 > 题目详情

【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为( ) 参考数据: ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

【答案】B
【解析】解:模拟执行程序,可得: n=6,S=3sin60°=
不满足条件S≥3.10,n=12,S=6×sin30°=3,
不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
满足条件S≥3.10,退出循环,输出n的值为24.
故选:B.
【考点精析】根据题目的已知条件,利用程序框图的相关知识可以得到问题的答案,需要掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l与平面α相交但不垂直,m为空间内一条直线,则下列结论一定不成立的是(
A.m⊥l,mα
B.m⊥l,m∥α
C.m∥l,m∩α≠
D.m⊥l,m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图中,输出的B是(
A.
B.0
C.﹣
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知P是函数f(x)=ex(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l: (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为(5, ),直线l与曲线C的交点为A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρcos2θ=2sinθ,它在点 处的切线为直线l.
(1)求直线l的直角坐标方程;
(2)已知点P为椭圆 =1上一点,求点P到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如 6613 用算筹表示就是 ,则 8335 用算筹可表示为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案