精英家教网 > 高中数学 > 题目详情
某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为(  )
A.上午10:00B.中午12:00
C.下午4:00D.下午6:00
C
当x∈[0,4]时,设y=k1x,
把(4,320)代入,得k1=80,∴y=80x.
当x∈[4,20]时,设y=k2x+b.
把(4,320),(20,0)代入得
解得
∴y=400-20x.
∴y=f(x)=
由y≥240,

解得3≤x≤4或4<x≤8,
∴3≤x≤8.
故第二次服药最迟应在当日下午4:00.故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数()的图象如图所示,则不等式的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数满足,则称在区间上的一组正交函数,给出三组函数:①;②;③.
其中为区间的正交函数的组数是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).
(1)将表示成的函数,并求该函数的定义域;
(2)讨论函数的单调性,并确定为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:Q(x)=170-0.05x,试问生产多少件产品时,总利润最高?(总利润=总销售额-总成本)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利(  )
A.25元B.20.5元C.15元D.12.5元

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对任意实数a,b,函数F(a,b)=(a+b-|a-b|),如果函数f(x)=-x2+2x+3,g(x)=x+1,那么函数G(x)=F(f(x),g(x))的最大值等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,映射.对于直线上任意一点,若,我们就称为直线的“相关映射”,称为映射的“相关直线”.又知
,则映射的“相关直线”有多少条(   )
A.B.C.D.无数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象可能是(  )

查看答案和解析>>

同步练习册答案