精英家教网 > 高中数学 > 题目详情
8.已知sinα=-$\sqrt{3}$cosα,则tan2α=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

分析 求出tanα的值,根据二倍角公式求出tan2α的值即可.

解答 解:∵sinα=-$\sqrt{3}$cosα,∴tanα=-$\sqrt{3}$,
∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{2×(-\sqrt{3})}{1-3}$=$\sqrt{3}$,
故选:C.

点评 本题考查了三角函数的求值问题,考查二倍角公式,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥面ABCD,E为PD的中点,AP=1,AD=$\sqrt{3}$.
(I)证明:PB∥平面AEC;
(II)求二面角P-CD-B的大小;
(Ⅲ)设三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,求A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a,b,c分别是△ABC的内角A,B,C的对边,BC边上的高为$\frac{a}{2}$,则$\frac{c}{b}$的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC=$\sqrt{2}$点P在线段A1B上,且cos∠PAO=$\frac{2}{3}$,则直线AP与平面A1AC所成角的正弦值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为e=$\frac{{\sqrt{2}}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为$\sqrt{2}$.
(1)求椭圆E的方程;
(2)斜率为k的直线l经过原点O,与椭圆E相交于不同的两点M,N,判断并说明在椭圆E上是否存在点P,使得△PMN的面积为$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,正方体ABCD-A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在六面体ABCD-A1B1C1D1中,平面ABCD∥平面A1B1C1D1,DD1∥平面A1B1BA,DD1∥平面B1BCC1
(1)证明:DD1∥BB1
(2)已知六面体ABCD-A1B1C1D1的棱长均为2,且BB1⊥平面ABCD,∠BAD=60°,M,N分别为棱A1B1,B1C1的中点,求四面体D-MNB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AC=2$\sqrt{3}$,AA1=$\sqrt{3}$,AB=2,点D在棱B1C1上,且B1C1=4B1D
(Ⅰ)求证:BD⊥A1C
(Ⅱ)求二面角B-A1D-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,边a,b,c分别是角A,B,C的对边,cosA=$\frac{4}{5}$,b=2,△ABC的面积S=3,则边a的值为$\sqrt{13}$.

查看答案和解析>>

同步练习册答案