精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)判断并证明f(x)的奇偶性;
(2)判断并证明f(x)的单调性;
(3)已知a,b∈(-1,1),且满足数学公式,若数学公式数学公式,求f(a),f(b)的值.

解:(1)若使函数的解析式有意义,
自变量x须满足
∴-1<x<1,函数定义域(-1,1)
∵定义域关于原点对称
f(-x)==-f(x)
故f(x)为奇函数
(2)函数在定义域上单调递增
证明:任取x1,x2,且-1<x1<x2<1
∵f(x1)-f(x2)=-=
而 
∴f(x1)-f(x2)<lg1=0
即f(x1)<f(x2
故函数f(x)单调递增
(3)∵
∴f(a)+f(b)=1…①
=f(a)-f(b)
又∵
f(a)-f(b)=2…②
解得f(a)=,f(b)=-
分析:(1)先分析函数的定义域是否关于原点对称,再分析f(-x)与f(x)的关系,进而根据函数奇偶性的定义,可得答案.
(2)任取x1,x2,且-1<x1<x2<1,进而判断f(x1)与f(x2)的大小关系,进而根据函数单调性的定义,可得答案.
(3)由(1)中函数的奇偶性,结合,若,可构造关于f(a),f(b)的方程组,解方程组可得答案.
点评:本题考查的知识点是函数单调性的定义及证明,函数奇偶性的定义及证明,函数的定义域,函数的值,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)判断函数在区间上的单调性;

(2)求函数在区间是区间[2,6]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省江门市台山侨中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)判断f(x)的奇偶性;(2)若,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2015届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

已知函数

(1)判断函数的奇偶性;(4分)

(2)若关于的方程有两解,求实数的取值范围;(6分)

(3)若,记,试求函数在区间上的最大值.(10分)

 

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省营口市高一上学期期末检测数学试卷 题型:解答题

(本小题满分12分)

 已知函数

(1)判断其奇偶性;

(2)指出该函数在区间(0,1)上的单调性并证明;

(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省四地六校高二下学期第二次联考数学(文科)试题 题型:解答题

(本小题满分12分)已知函数

(1)判断函数的奇偶性;(2)求证:方程至少有一根在区间

 

查看答案和解析>>

同步练习册答案