精英家教网 > 高中数学 > 题目详情
设f(x)在x=1处连续,且f(1)=0,
lim
x→1
f(x)
x-1
=2,求f′(1).
∵f(1)=0,
lim
x→1
f(x)
x-1
=2,
∴f′(1)=
lim
△x→0
f(1+△x)-f(1)
△x

=
lim
x→1
f(x)-f(1)
x-1
=
lim
x→1
f(x)
x-1
=2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)在x=x0处可导,且
lim
△x→0
f(x0-3△x)-f(x0)
△x
=1
,则f′(x0)等于(  )
A、1
B、-
1
3
C、-3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)在x=1处连续,且f(1)=0,
lim
x→1
f(x)
x-1
=2,求f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)设函数f(x)=
axx2+b
(a>0)

(1)若函数f(x)在x=-1处取得极值-2,求a,b的值.
(2)若函数f(x)在区间(-1,1)内单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:14.2 导数的概念与运算(2)(解析版) 题型:解答题

设f(x)在x=1处连续,且f(1)=0,=2,求f′(1).

查看答案和解析>>

同步练习册答案