精英家教网 > 高中数学 > 题目详情
设23-2x<0.53x-4,则x的取值集合是
(-∞,1)
(-∞,1)
分析:由题意可得 23-2x<24-3x,由指数函数的单调性可得 3-2x<4-3x,由此解得 x的取值集合.
解答:解:∵23-2x<0.53x-4,∴23-2x<24-3x,∴3-2x<4-3x,解得 x<1,
故答案为 (-∞,1).
点评:本题主要考查指数函数的图象和性质的应用,指数不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)设f(x)是定义在R上的奇函数,且对于任意的x∈R,f(1+x)=f(1-x)恒成立.当x∈[0,1]时,f(x)=2x.若关于x的方程f(x)=ax有5个不同的解,则实数a的取值范围是
a=
2
5
-
2
3
<a<-
2
7
a=
2
5
-
2
3
<a<-
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对于任意的x∈R,f(1+x)-f(1-x)=0恒成立,当x∈[0,1]时,f(x)=2x,若方程f(x)=ax恰好有5个不同的解,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为-
1
2

②关于x的不等式(a-3)x2<(4a-2)x对任意的a∈(0,1)恒成立,则x的取值范围是(-∞,-1]∪[
2
3
,+∞)

③变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则r2<0<r1
④下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
x 3 4 5 6
y 2.5 3 4 4.5
根据上表提供的数据,得出y关于x的线性回归方程为y=a+0.7x,则a=-0.35;
以上命题正确的个数是(  )

查看答案和解析>>

同步练习册答案